cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112700 Partial sum of Catalan numbers A000108 multiplied by powers of 6.

This page as a plain text file.
%I A112700 #14 Jun 12 2024 21:26:39
%S A112700 1,7,79,1159,19303,345895,6504487,126597031,2528447911,51526205863,
%T A112700 1067116097959,22394503831975,475191351108007,10177980935594407,
%U A112700 219758235960500647,4778128782752211367,104526001924311998887
%N A112700 Partial sum of Catalan numbers A000108 multiplied by powers of 6.
%H A112700 Robert Israel, <a href="/A112700/b112700.txt">Table of n, a(n) for n = 0..727</a>
%F A112700 a(n) = Sum_{k=0..n} C(k)*6^k, with C(n):=A000108(n).
%F A112700 G.f.: c(6*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
%F A112700 Conjecture: (n+1)*a(n) +(-25*n+11)*a(n-1) +12*(2*n-1)*a(n-2)=0. - _R. J. Mathar_, Jun 08 2016, verified by _Robert Israel_, Jun 28 2018
%F A112700 0 = a(n)*(+576*a(n+1) -636*a(n+2) +60*a(n+3)) +a(n+1)*(-564*a(n+1) +613*a(n+2) -61*a(n+3)) +a(n+2)*(+11*a(n+2) +a(n+3)) for all n>=0. - _Michael Somos_, Jun 28 2018
%p A112700 ListTools:-PartialSums([seq(binomial(2*n,n)/(n+1)*6^n,n=0..50)]); # _Robert Israel_, Jun 28 2018
%t A112700 Accumulate[Table[ (CatalanNumber@ n)*6^n, {n, 0, 16}]] (* _James C. McMahon_, Jun 11 2024 *)
%Y A112700 Seventh column (m=6) of triangle A112705.
%K A112700 nonn,easy
%O A112700 0,2
%A A112700 _Wolfdieter Lang_, Oct 31 2005