cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112701 Partial sum of Catalan numbers (A000108) multiplied by powers of 7.

This page as a plain text file.
%I A112701 #23 Mar 31 2025 18:07:27
%S A112701 1,8,106,1821,35435,741329,16270997,369570944,8613236374,204812473608,
%T A112701 4949266755812,121188396669810,3000342229924222,74979188061284522,
%U A112701 1888846103011564082,47915719069874907917,1222954711282739097587
%N A112701 Partial sum of Catalan numbers (A000108) multiplied by powers of 7.
%H A112701 Robert Israel, <a href="/A112701/b112701.txt">Table of n, a(n) for n = 0..693</a>
%F A112701 a(n) = Sum_{k=0..n} A000108(k)*7^k.
%F A112701 G.f.: c(7*x)/(1-x), where c(x) = (1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
%F A112701 Conjecture: (n+1)*a(n) +(-29*n+13)*a(n-1) +14*(2*n-1)*a(n-2)=0. - _R. J. Mathar_, Jun 08 2016
%F A112701 Conjecture verified using the d.e. (28*x^3-29*x^2+x)*y' + (42*x^2-16*x+1)*y=1 satisfied by the g.f. - _Robert Israel_, Aug 04 2020
%F A112701 a(n) = 7^n*binomial(2*n, n)*(1 - hypergeom([1, n+1/2], [n+2], 28))/(n+1) + (1 - 3*sqrt(3)*i)/14, where i denotes the imaginary units. - _Stefano Spezia_, Mar 31 2025
%p A112701 f:= gfun:-rectoproc({(n+1)*a(n) +(-29*n+13)*a(n-1) +14*(2*n-1)*a(n-2)=0,a(0)=1,a(1)=8},a(n),remember):
%p A112701 map(f, [$0..50]); # _Robert Israel_, Aug 04 2020
%t A112701 CatalanNumber[#]*7^#& /@ Range[0, 20] // Accumulate (* _Jean-François Alcover_, Aug 29 2022 *)
%Y A112701 Column m=7 of triangle A112705.
%Y A112701 Partial sums of A156266.
%Y A112701 Cf. A000108, A000420.
%K A112701 nonn,easy
%O A112701 0,2
%A A112701 _Wolfdieter Lang_, Oct 31 2005