cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112705 Triangle built from partial sums of Catalan numbers A000108 multiplied by powers.

This page as a plain text file.
%I A112705 #18 Aug 29 2022 10:31:31
%S A112705 1,1,1,1,2,1,1,4,3,1,1,9,11,4,1,1,23,51,22,5,1,1,65,275,157,37,6,1,1,
%T A112705 197,1619,1291,357,56,7,1,1,626,10067,11497,3941,681,79,8,1,1,2056,
%U A112705 64979,107725,46949,9431,1159,106,9,1,1,6918,431059,1045948,587621,140681,19303,1821,137,10,1
%N A112705 Triangle built from partial sums of Catalan numbers A000108 multiplied by powers.
%C A112705 The column sequences (without leading zeros) begin with A000012 (powers of 1), A112705 (partial sums Catalan), A112696-A112704, for m=0..10.
%H A112705 Wolfdieter Lang, <a href="/A112705/a112705.txt">First 10 rows.</a>
%F A112705 a(n, m) = sum(C(k)*m^k, k=0..n-m), n>m>0, with C(n):=A000108(n); a(n, n)=1; a(n, 0)=1; a(n, m)=0 if n<m.
%F A112705 G.f. for column m>=0 (without leading zeros): c(m*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
%e A112705 Triangle starts:
%e A112705   1;
%e A112705   1, 1;
%e A112705   1, 2,  1;
%e A112705   1, 4,  3,   1;
%e A112705   1, 9,  11,  4,   1;
%e A112705   1, 23, 51,  22,  5,  1;
%e A112705   1, 65, 275, 157, 37, 6, 1;
%e A112705   ...
%t A112705 col[m_] := col[m] = CatalanNumber[#]*m^#& /@ Range[0, 20] // Accumulate;
%t A112705 T[n_, m_] := If[m == 0, 1, col[m][[n - m + 1]]];
%t A112705 Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Aug 29 2022 *)
%o A112705 (PARI) t(n, m) = if (m==0, 1, if (n==m, 1, sum(kk=0, n-m, m^kk*binomial(2*kk, kk)/(kk+1))));
%o A112705 tabl(nn) = {for (n=0, nn, for (m=0, n, print1(t(n, m), ", ");); print(););} \\ _Michel Marcus_, Nov 25 2015
%Y A112705 Row sums give A112706.
%K A112705 nonn,easy,tabl
%O A112705 0,5
%A A112705 _Wolfdieter Lang_, Oct 31 2005