cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112731 Primes such that the sum of the predecessor and successor primes is divisible by 7.

This page as a plain text file.
%I A112731 #10 Jul 31 2015 21:45:43
%S A112731 3,13,61,71,83,167,197,241,271,281,283,317,347,349,379,431,457,499,
%T A112731 503,569,617,631,641,643,701,757,761,797,827,829,863,1061,1151,1163,
%U A112731 1217,1321,1381,1471,1481,1483,1531,1543,1553,1609,1619,1667,1669,1777,1877
%N A112731 Primes such that the sum of the predecessor and successor primes is divisible by 7.
%H A112731 Harvey P. Dale, <a href="/A112731/b112731.txt">Table of n, a(n) for n = 1..1000</a>
%e A112731 a(1) = 3 because previousprime(3) + nextprime(3) = 2 + 5 = 7.
%e A112731 a(2) = 13 because previousprime(13) + nextprime(13) = 11 + 17 = 28 = 7 * 4.
%e A112731 a(3) = 61 because previousprime(61) + nextprime(61) = 59 + 67 = 126 = 7 * 18.
%e A112731 a(4) = 71 because previousprime(71) + nextprime(71) = 67 + 73 = 140 = 7 * 20.
%t A112731 For[n = 2, n < 300, n++, If[(Prime[n - 1] + Prime[n + 1])/7 == Floor[(Prime[n - 1] + Prime[n + 1])/7], Print[Prime[n]]]] (* _Stefan Steinerberger_ *)
%t A112731 Prime@Select[Range[2, 298], Mod[Prime[ # - 1] + Prime[ # + 1], 7] == 0 &] (* _Robert G. Wilson v_, Jan 11 2006 *)
%t A112731 Transpose[Select[Partition[Prime[Range[7000]],3,1],Divisible[First[#]+ Last[#],7]&]][[2]] (* _Harvey P. Dale_, Jun 11 2013 *)
%Y A112731 Cf. A000040, A112681, A112794, A112731, A112789, A112795, A112796, A112804, A112847, A112859, A113155, A113156, A113157, A113158.
%K A112731 easy,nonn
%O A112731 1,1
%A A112731 _Jonathan Vos Post_, Dec 31 2005
%E A112731 More terms from _Stefan Steinerberger_ and _Robert G. Wilson v_, Jan 02 2006