A112739 Array counting nodes in rooted trees of height n in which the root and internal nodes have valency k (and the leaf nodes have valency one).
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 5, 2, 1, 1, 5, 10, 7, 2, 1, 1, 6, 17, 22, 9, 2, 1, 1, 7, 26, 53, 46, 11, 2, 1, 1, 8, 37, 106, 161, 94, 13, 2, 1, 1, 9, 50, 187, 426, 485, 190, 15, 2, 1, 1, 10, 65, 302, 937, 1706, 1457, 382, 17, 2, 1, 1, 11, 82, 457, 1814, 4687, 6826, 4373, 766, 19
Offset: 0
Examples
As a square array, rows begin 1,1,1,1,1,1,... (A000012) 1,2,2,2,2,2,... (A040000) 1,3,5,7,9,11,... (A005408) 1,4,10,22,46,94,... (A033484) 1,5,17,53,161,485,... (A048473) 1,6,26,106,426,1706,... (A020989) 1,7,37,187,937,4687,... (A057651) 1,8,50,302,1814,10886,... (A061801) As a number triangle, rows start 1; 1,1; 1,2,1; 1,3,2,1; 1,4,5,2,1; 1,5,10,7,2,1;
References
- L. He, X. Liu and G. Strang, (2003) Trees with Cantor Eigenvalue Distribution. Studies in Applied Mathematics 110 (2), 123-138.
- L. He, X. Liu and G. Strang, Laplacian eigenvalues of growing trees, Proc. Conf. on Math. Theory of Networks and Systems, Perpignan (2000).
Crossrefs
Formula
As a square array read by antidiagonals, T(n, k)=sum{j=0..k, (2-0^j)*(n-1)^(k-j)}; T(n, k)=(n(n-1)^k-2)/(n-2), n<>2, T(2, n)=2n+1; T(n, k)=sum{j=0..k, (n(n-1)^j-0^j)/(n-1)}, j<>1. As a triangle read by rows, T(n, k)=if(k<=n, sum{j=0..k, (2-0^j)*(n-k-1)^(k-j)}, 0).
Comments