cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112772 Semiprimes of the form 6n+2.

This page as a plain text file.
%I A112772 #28 Sep 07 2024 08:54:54
%S A112772 14,26,38,62,74,86,122,134,146,158,194,206,218,254,278,302,314,326,
%T A112772 362,386,398,422,446,458,482,542,554,566,614,626,662,674,698,734,746,
%U A112772 758,794,818,842,866,878,914,926,974,998,1046,1082,1094,1142,1154,1202,1214
%N A112772 Semiprimes of the form 6n+2.
%C A112772 {6} + A112772 + A112774 = A100484 = 2*A000040.
%C A112772 Rado showed that for a given Bernoulli number B_n there exist infinitely many Bernoulli numbers B_m having the same denominator. As a special case, if n = 2p where p is an odd prime p == 1 (mod 3), then the denominator of the Bernoulli number B_n equals 6. - _Bernd C. Kellner_, Mar 21 2018
%H A112772 Harvey P. Dale, <a href="/A112772/b112772.txt">Table of n, a(n) for n = 1..1000</a>
%H A112772 R. Rado, <a href="http://dx.doi.org/10.1112/jlms/s1-9.2.88">A note on the Bernoullian numbers</a>, J. London Math. Soc. 9 (1934) 88-90.
%F A112772 a(n) = 2 * A002476(n) = 6 * A024892(n) + 2.
%F A112772 denominator(Bernoulli(a(n))) = 6. - _Bernd C. Kellner_, Mar 21 2018
%t A112772 Select[6Range[0,300]+2,PrimeOmega[#]==2&] (* _Harvey P. Dale_, Oct 04 2011 *)
%o A112772 (Magma) IsSemiprime:= func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [0..210] | IsSemiprime(s) where s is 6*n + 2]; // _Vincenzo Librandi_, Sep 22 2012
%o A112772 (PARI) 2*select(n->n%3==1,primes(100)) \\ _Charles R Greathouse IV_, Sep 22 2012
%Y A112772 Subsequence of A051222. - _Bernd C. Kellner_, Mar 21 2018
%Y A112772 Cf. A027642.
%K A112772 easy,nonn
%O A112772 1,1
%A A112772 _Jonathan Vos Post_ and _Ray Chandler_, Oct 15 2005