cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112794 Primes such that the sum of the predecessor and successor primes is divisible by 5.

This page as a plain text file.
%I A112794 #12 May 18 2019 18:27:32
%S A112794 5,11,19,41,71,73,89,97,101,109,137,149,181,229,241,281,293,311,349,
%T A112794 359,389,397,409,419,421,433,449,457,461,487,541,557,587,631,701,709,
%U A112794 743,751,787,811,859,881,887,919,937,991,997,1009,1021,1033,1049,1051,1063
%N A112794 Primes such that the sum of the predecessor and successor primes is divisible by 5.
%H A112794 Harvey P. Dale, <a href="/A112794/b112794.txt">Table of n, a(n) for n = 1..1000</a>
%F A112794 a(n) = prime(i) is in this sequence iff prime(i-1)+prime(i+1) = 0 mod 5. a(n) = A000040(i) is in this sequence iff A000040(i-1)+A000040(i+1) = 0 mod 5.
%e A112794 a(1) = 5 because prevprime(5) + nextprime(5) = 3 + 7 = 10 = 5 * 2.
%e A112794 a(2) = 11 because prevprime(11) + nextprime(11) = 7 + 13 = 20 = 5 * 4.
%e A112794 a(3) = 19 because prevprime(19) + nextprime(19) = 17 + 23 = 40 = 5 * 8.
%e A112794 a(4) = 41 because prevprime(41) + nextprime(41) = 37 + 43 = 80 = 5 * 16.
%t A112794 Prime@ Select[Range[2, 179], Mod[Prime[ # - 1] + Prime[ # + 1], 5] == 0 &] (* _Robert G. Wilson v_ *)
%t A112794 Select[Partition[Prime[Range[200]],3,1],Divisible[#[[1]]+#[[3]],5]&] [[All,2]] (* _Harvey P. Dale_, May 18 2019 *)
%Y A112794 Cf. A000040, A112681, A112731, A112789, A112795, A112796, A112804, A112847, A112859, A113155, A113156, A113157, A113158.
%K A112794 easy,nonn
%O A112794 1,1
%A A112794 _Jonathan Vos Post_, Jan 01 2006
%E A112794 Corrected and extended by _Robert G. Wilson v_, Jan 05 2006