This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112800 #12 Mar 13 2019 23:40:11 %S A112800 0,0,0,1,3,4,6,8,9,10,12,14,14,16,18,18,20,23,25,26,28,30,30,32,32,34, %T A112800 37,36,40,43,42,44,46,46,46,50,51,53,59,57,57,61,62,62,66,68,69,71,72, %U A112800 71,73,76,74,81,81,78,87,90,87,91,93,90,94,97,94,100,107,103,114,115 %N A112800 Number of ways of representing 2n-1 as sum of three integers with 1 distinct prime factor. %C A112800 Meng proves a remarkable generalization of the Goldbach-Vinogradov classical result that every sufficiently large odd integer N can be partitioned as the sum of three primes N = p1 + p2 + p3. The new proof is that every sufficiently large odd integer N can be partitioned as the sum of three integers N = a + b + c where each of a, b, c has k distinct prime factors for the same k. %H A112800 R. J. Mathar, <a href="/A112800/b112800.txt">Table of n, a(n) for n = 1..1655</a> %H A112800 Xianmeng Meng, <a href="https://doi.org/10.1016/j.jnt.2005.04.013">On sums of three integers with a fixed number of prime factors</a>, Journal of Number Theory, Vol. 114 (2005), pp. 37-65. %F A112800 Number of ways of representing 2n-1 as sum of three primes (A000040) or powers of primes (A000961 except 1). Number of ways of representing 2n-1 as a + b + c where omega(a) = omega(b) = omega(c) = 1. %e A112800 a(4) = 1 because the only partition into nontrivial prime powers of (2*4)-1 = 7 is 7 = 2 + 2 + 3. %e A112800 a(5) = 3 because the 3 partitions into nontrivial prime powers of (2*5)-1 = 9 are 9 = 2 + 2 + 5 = 2 + 3 + 4 = 3 + 3 + 3. The middle one of those partitions has "4" which is not a prime, but is a power of a prime. %e A112800 a(6) = 4 because the 4 partitions into nontrivial prime powers of (2*6)-1 = 11 are 11 = 2 + 2 + 7 = 2 + 4 + 5 = 3 + 3 + 5. %e A112800 a(7) = 6 because the 6 partitions into nontrivial prime powers of (2*7)-1 = 13 are 13 = 2 + 2 + 9 = 2 + 3 + 8 = 2 + 4 + 7 = 3 + 3 + 7 = 3 + 5 + 5 = 4 + 4 + 5. %p A112800 isA000961 := proc(n) %p A112800 if n = 1 then %p A112800 return true; %p A112800 end if; %p A112800 numtheory[factorset](n) ; %p A112800 if nops(%) = 1 then %p A112800 true; %p A112800 else %p A112800 false; %p A112800 end if; %p A112800 end proc: %p A112800 A000961 := proc(n) %p A112800 option remember; %p A112800 local a; %p A112800 if n = 1 then %p A112800 1; %p A112800 else %p A112800 for a from procname(n-1)+1 do %p A112800 if isA000961(a) then %p A112800 return a; %p A112800 end if; %p A112800 end do: %p A112800 end if; %p A112800 end proc: %p A112800 A112800 := proc(n) %p A112800 local a,i,j,p,q,r,n2; %p A112800 n2 := 2*n-1 ; %p A112800 a := 0 ; %p A112800 for i from 2 do %p A112800 p := A000961(i) ; %p A112800 if 3*p > n2 then %p A112800 return a; %p A112800 else %p A112800 for j from i do %p A112800 q := A000961(j) ; %p A112800 r := n2-p-q ; %p A112800 if r < q then %p A112800 break; %p A112800 end if; %p A112800 if isA000961(r) then %p A112800 a := a+1 ; %p A112800 end if; %p A112800 end do: %p A112800 end if ; %p A112800 end do: %p A112800 end proc: %p A112800 for n from 1 do %p A112800 printf("%d %d\n",n,A112800(n)); %p A112800 end do: # _R. J. Mathar_, Jun 09 2014 %Y A112800 Cf. A000040, A112799, A112801, A112802. %K A112800 nonn %O A112800 1,5 %A A112800 _Jonathan Vos Post_ and _Ray Chandler_, Sep 19 2005