cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112804 Primes such that the sum of the predecessor and successor primes is divisible by 19.

This page as a plain text file.
%I A112804 #7 Oct 31 2013 12:17:34
%S A112804 59,97,683,797,821,1049,1307,1579,1709,1787,1913,2029,2143,2161,2281,
%T A112804 2339,2393,2437,2557,2659,2791,2851,2887,3389,3413,3533,3557,3643,
%U A112804 3779,3853,4177,4241,4447,4507,4583,4957,4973,5119,5641,5813,6043,6133,7069
%N A112804 Primes such that the sum of the predecessor and successor primes is divisible by 19.
%C A112804 There is a trivial analog for every prime >= 3. A112681 is analogous mod 3. A112731 is analogous mod 7. A112789 is analogous mod 11.
%F A112804 a(n) = prime(i) is in this sequence iff prime(i-1)+prime(i+1) = 0 mod 19. a(n) = A000040(i) is in this sequence iff A000040(i-1)+A000040(i+1) = 0 mod 19.
%e A112804 a(1) = 59 because prevprime(59) + nextprime(59) = 53 + 61 = 114 = 19 * 6.
%e A112804 a(2) = 97 because prevprime(97) + nextprime(97) = 89 + 101 = 190 = 19 * 10.
%e A112804 a(3) = 683 because prevprime(683) + nextprime(683) = 677 + 691 = 1368 = 19 * 72.
%e A112804 a(4) = 797 because prevprime(797) + nextprime(797) = 787 + 809 = 1596 = 19 * 84.
%t A112804 Prime@ Select[Range[2, 912], Mod[Prime[ # - 1] + Prime[ # + 1], 19] == 0 &] (* _Robert G. Wilson v_ *)
%Y A112804 Cf. A000040, A112681, A112794, A112731, A112789, A112795, A112796, A112804, A112847, A112859, A113155, A113156, A113157, A113158.
%K A112804 easy,nonn
%O A112804 1,1
%A A112804 _Jonathan Vos Post_, Jan 01 2006
%E A112804 More terms from _Robert G. Wilson v_, Jan 05 2006