A112825 Least even number k such that the Goldbach gap is 2n, or 0 if no such number exists.
4, 10, 14, 24, 22, 26, 36, 34, 50, 52, 46, 60, 58, 70, 62, 80, 78, 74, 84, 82, 86, 94, 100, 126, 114, 106, 120, 118, 130, 0, 138, 0, 134, 144, 142, 152, 158, 162, 176, 172, 166, 0, 178, 196, 0, 208, 198, 194, 204, 202, 230, 216, 214, 236, 0, 226, 0, 0, 0, 0, 258, 0, 254
Offset: 0
Keywords
Examples
a(1)=10 because the two Goldbach partitions of 10 are {3,7} & {5,5} and (5-3)/2=1.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A020481.
Programs
-
Mathematica
f[n_] := Block[{p = 2, q = n/2}, While[ !PrimeQ[p] || !PrimeQ[n - p], p++ ]; While[ !PrimeQ[q] || !PrimeQ[n - q], q-- ]; q - p]; t = Table[0, {100}]; Do[a = f[2n]; If[a < 100 && t[[a/2 + 1]] == 0, t[[a/2 + 1]] = 2n; Print[{2a, 2n}]], {n, 2, 10^4}]; Take[t, 63]