cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112839 Number of domino tilings of a 7-pillow of order n.

Original entry on oeis.org

1, 2, 5, 13, 34, 136, 666, 3577, 23353, 200704, 2062593, 24878084, 373006265, 6917185552, 153624835953, 4155902941554, 138450383756352, 5602635336941568, 274540864716936000, 16486029239132118530, 1209110712606533552257
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005

Keywords

Comments

A 7-pillow is a generalized Aztec pillow. The 7-pillow of order n is a rotationally-symmetric region. It has a 2 X 2n central band of squares and then steps up from this band with steps of 7 horizontal squares to every 1 vertical square and steps down with steps of 1 horizontal square to every 1 vertical square.

Examples

			The number of domino tilings of the 7-pillow of order 8 is 23353=11^2*193.
		

References

  • C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.

Crossrefs

A112839 breaks down as A112840^2 times A112841, where A112841 is not necessarily squarefree.
3-pillows: A112833-A112835; 5-pillows: A112836-A112838; 9-pillows: A112842-A112844.