A112839
Number of domino tilings of a 7-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 136, 666, 3577, 23353, 200704, 2062593, 24878084, 373006265, 6917185552, 153624835953, 4155902941554, 138450383756352, 5602635336941568, 274540864716936000, 16486029239132118530, 1209110712606533552257
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 7-pillow of order 8 is 23353=11^2*193.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112841
Small-number statistic from the enumeration of domino tilings of a 7-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 34, 74, 73, 193, 256, 793, 1049, 2465, 2857, 6577, 8226, 21348, 28872, 74740, 91970, 222217, 268769, 669265, 852305, 2201945, 2805760, 7000777, 8636081, 21311098, 26588770, 67091170, 85150213
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 7-pillow of order 8 is 23353=11^2*193. A112841(n)=193.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
Showing 1-2 of 2 results.
Comments