This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112866 #16 Oct 26 2023 08:26:49 %S A112866 1,2,3,8,34,1597,20365011074 %N A112866 If a(n-1) is the i-th Fibonacci number then a(n)=Fibonacci(i+a(n-2)); with a(1)=1, a(2)=2 and where we use the following nonstandard indexing for the Fibonacci numbers: f(n)=f(n-1)+f(n-2), f(1)=1, f(2)=2 (cf. A000045). %C A112866 The next term has 345 digits and is not displayed here. %e A112866 a(5)=Fibonacci(5+3)=34 because a(4) is the 5th Fibonacci number and a(3)=3. %p A112866 f := proc(n) %p A112866 combinat[fibonacci](n+1) ; %p A112866 end proc: %p A112866 Fidx := proc(n) %p A112866 for i from 1 do %p A112866 if f(i) = n then %p A112866 return i; %p A112866 elif f(i) > n then %p A112866 return -1 ; %p A112866 end if; %p A112866 end do: %p A112866 end proc: %p A112866 A112866 := proc(n) %p A112866 option remember; %p A112866 if n<= 2 then %p A112866 n; %p A112866 else %p A112866 i := Fidx(procname(n-1)) ; %p A112866 f( i+procname(n-2)) ; %p A112866 end if: %p A112866 end proc: # _R. J. Mathar_, Nov 26 2011 %t A112866 f[n_] := Fibonacci[n+1]; %t A112866 Fidx[n_] := For[i = 1, True, i++, If[f[i] == n, Return[i], If[f[i] > n, Return[-1]]]]; %t A112866 a[n_] := a[n] = If[n <= 2, n, i = Fidx[a[n-1]]; f[i+a[n-2]]]; %t A112866 Table[a[n], {n, 1, 7}] (* _Jean-François Alcover_, Oct 26 2023, after _R. J. Mathar_ *) %Y A112866 Cf. A112237, A000045, A112601. %K A112866 nonn %O A112866 1,2 %A A112866 _Yasutoshi Kohmoto_, Dec 25 2005