A112883 A skew Jacobsthal-Pascal matrix.
1, 0, 1, 0, 1, 3, 0, 0, 2, 5, 0, 0, 1, 7, 11, 0, 0, 0, 3, 16, 21, 0, 0, 0, 1, 12, 41, 43, 0, 0, 0, 0, 4, 34, 94, 85, 0, 0, 0, 0, 1, 18, 99, 219, 171, 0, 0, 0, 0, 0, 5, 60, 261, 492, 341, 0, 0, 0, 0, 0, 1, 25, 195, 678, 1101, 683, 0, 0, 0, 0, 0, 0, 6, 95, 576, 1692, 2426, 1365, 0, 0, 0, 0, 0
Offset: 0
Examples
Rows begin 1; 0, 1; 0, 1, 3; 0, 0, 2, 5; 0, 0, 1, 7, 11; 0, 0, 0, 3, 16, 21; 0, 0, 0, 1, 12, 41, 43; 0, 0, 0, 0, 4, 34, 94, 85; 0, 0, 0, 0, 1, 18, 99, 219, 171; 0, 0, 0, 0, 0, 5, 60, 261, 492, 341; 0, 0, 0, 0, 0, 1, 25, 195, 678, 1101, 683;
Crossrefs
Cf. A111006.
Formula
From Philippe Deléham: (Start)
G.f.: 1/(1-yx(1-x)-2x^2*y*2);
Number triangle T(n, k) = Sum_{j=0..2k-n} C(n-k+j, n-k)*C(j, 2k-n-j)*2^(2k-n-j);
T(n, k) = A073370(k, n-k); T(n, k) = T(n-1, k-1) + T(n-2, k-1) + 2*T(n-2, k-2). (End)
Comments