cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112937 Logarithmic derivative of A112936 such that a(n)=(1/3)*A112936(n+1) for n>0, where A112936 equals the INVERT transform (with offset) of triple factorials A008544.

This page as a plain text file.
%I A112937 #3 Mar 30 2012 18:36:51
%S A112937 1,5,37,377,4981,81305,1580797,35637377,913115701,26189790425,
%T A112937 830916198157,28883617580177,1091455878504421,44541746007215945,
%U A112937 1952125704702209917,91440056107001450177,4558596081095404198741
%N A112937 Logarithmic derivative of A112936 such that a(n)=(1/3)*A112936(n+1) for n>0, where A112936 equals the INVERT transform (with offset) of triple factorials A008544.
%F A112937 G.f.: log(1+x + 3*x*[Sum_{k>=1} a(n)]) = Sum_{k>=1} a(n)/n*x^n.
%e A112937 log(1+x + 3*x*[x + 5*x^2 + 37*x^3 + 377*x^4 + 4981*x^5 +...])
%e A112937 = x + 5/2*x^2 + 37/3*x^3 + 377/4*x^4 + 4981/5*x^5 + ...
%o A112937 (PARI) {a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+3*x^2*deriv(F)/F); return(n*polcoeff(log(F),n,x))}
%Y A112937 Cf. A008544, A112936; A112934, A112935, A112938, A112939, A112940, A112941, A112942, A112943.
%K A112937 nonn
%O A112937 1,2
%A A112937 _Paul D. Hanna_, Oct 09 2005