cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112943 Logarithmic derivative of A112942 such that a(n)=(1/6)*A112942(n+1) for n>0, where A112942 equals the INVERT transform (with offset) of sextuple factorials A008543.

This page as a plain text file.
%I A112943 #3 Mar 30 2012 18:36:51
%S A112943 1,11,181,4031,114001,3917771,158531941,7380184511,388385146081,
%T A112943 22791211333451,1475182111403221,104384110708795391,
%U A112943 8015356365346614961,663741406196190241931,58957686544170035607301
%N A112943 Logarithmic derivative of A112942 such that a(n)=(1/6)*A112942(n+1) for n>0, where A112942 equals the INVERT transform (with offset) of sextuple factorials A008543.
%F A112943 G.f.: log(1+x + 6*x*[Sum_{n>=1} a(n)]) = Sum_{n>=1} a(n)/n*x^n.
%e A112943 log(1+x + 6*x*[x + 11*x^2 + 181*x^3 + 4031*x^4 + 114001*x^5 +...])
%e A112943 = x + 11/2*x^2 + 181/3*x^3 + 4031/4*x^4 + 114001/5*x^5 + ...
%o A112943 (PARI) {a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+6*x^2*deriv(F)/F); return(n*polcoeff(log(F),n,x))}
%Y A112943 Cf. A008543, A112942; A112934, A112935, A112936, A112937, A112938, A112939, A112940, A112941.
%K A112943 nonn
%O A112943 1,2
%A A112943 _Paul D. Hanna_, Oct 09 2005