cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112971 Row sums of the matrix ((1,xc(x))^2 mod 2), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 2, 2, 1, 6, 3, 4, 2, 4, 2, 2, 1, 8, 4, 4, 2, 4, 2, 2, 1, 11, 6, 6, 3, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1, 16, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1, 22, 11, 12, 6, 12, 6, 6, 3, 16, 8, 8, 4, 8, 4, 4, 2, 16, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1, 32, 16, 16, 8
Offset: 0

Views

Author

Paul Barry, Oct 07 2005

Keywords

Comments

(1,xc(x)) is the Riordan array T(n,k)=[x^n](xc(x))^k. Conjectures: a(2^n)=a(2^(n+1)+1)=A005578(n);a(2^n-1)=a(3*2^n-1)=1.

Crossrefs

Cf. A112970.

Formula

a(n)=sum{k=0..n, mod(sum{i=0..n, sum{j=0..n, ((2j+1)/(n+j+1))(-1)^(j-i)C(2n, n+j)C(j, i)}* sum{l=0..i, ((2l+1)/(i+l+1))(-1)^(l-k)C(2i, i+l)C(l, k)}}, 2)}