This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112993 #17 Aug 27 2021 02:00:20 %S A112993 8,27,343,512,19683,79507,103823,110592,140608,148877,250047,314432, %T A112993 778688,3869893,5088448,6539203,7077888,18191447,54010152,67917312, %U A112993 75686967,96071912,102503232,109215352,115501303,146363183,202262003,224755712 %N A112993 Exclusionary cubes: cubes of the terms in A112994. %C A112993 b-file is complete: there are 42 terms. - _Michael S. Branicky_, Aug 27 2021 %D A112993 H. Ibstedt, Solution to Problem 2623, "Exclusionary Powers", pp. 346-9, Journal of Recreational Mathematics, Vol. 32 No.4 2003-4, Baywood NY. %D A112993 Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60. %H A112993 N. J. A. Sloane, <a href="/A112993/b112993.txt">Table of n, a(n) for n = 1..42</a> [From the Clifford Pickover link. Conjectured to be the full list of terms.] %H A112993 Clifford A. Pickover, <a href="http://sprott.physics.wisc.edu/Pickover/extremec.html">Extreme Challenges in Mathematics and Morals</a> %o A112993 (Python) %o A112993 def ok(n): %o A112993 s = str(n) %o A112993 return len(s) == len(set(s)) and set(s) & set(str(n**3)) == set() %o A112993 print([k**3 for k in range(7659) if ok(k)]) # _Michael S. Branicky_, Aug 27 2021 %o A112993 (Python) # version for verifying full sequence %o A112993 from itertools import permutations %o A112993 def no_repeated_digits(): %o A112993 for d in range(1, 11): %o A112993 for p in permutations("0123456789", d): %o A112993 if p[0] == '0': continue %o A112993 yield int("".join(p)) %o A112993 def afull(): %o A112993 alst = [] %o A112993 for k in no_repeated_digits(): %o A112993 if set(str(k)) & set(str(k**3)) == set(): %o A112993 alst.append(k**3) %o A112993 return alst %o A112993 print(afull()) # _Michael S. Branicky_, Aug 27 2021 %Y A112993 Cf. A112994. %K A112993 nonn,base,fini,full %O A112993 1,1 %A A112993 _Lekraj Beedassy_, Oct 13 2005 %E A112993 Corrected by _N. J. A. Sloane_, May 22 2008