cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113000 Numbers n such that n, n+1, n+2 and n+3 are 1,2,3,4-almost primes.

This page as a plain text file.
%I A113000 #17 Sep 08 2022 08:45:23
%S A113000 193,421,661,1093,1657,2137,2341,2593,6217,7057,8101,9817,12421,12853,
%T A113000 15121,16033,16417,17257,17881,19813,20641,21817,25033,25657,27337,
%U A113000 28921,30661,31081,31321,31333,32377,35521,36457,38281,40693,45553
%N A113000 Numbers n such that n, n+1, n+2 and n+3 are 1,2,3,4-almost primes.
%C A113000 Subsequence of A112998: a(1) = 193 = A112998(3), a(2) = 421= A112998(6), a(3) = 661 = A112998(8). - _Zak Seidov_, Oct 14 2012
%H A113000 Vincenzo Librandi, <a href="/A113000/b113000.txt">Table of n, a(n) for n = 1..2000</a>
%e A113000 193 is prime, 194=2*97 is semiprime, 195=3*5*13 is 3-almost prime, 196=2*2*7*7 is 4-almost prime.
%t A113000 Do[p=Prime[n];If[Table[Total[FactorInteger[p+k]][[2]], {k, 3}]=={2, 3, 4}, Print[p]], {n, 1, 10000}]
%o A113000 (Magma)  [n: n in PrimesUpTo(5*10^4) | forall{k: k in [1..3] | &+[f[j, 2]: j in [1..#f]] eq k+1 where f is Factorization(n+k)}]; // _Vincenzo Librandi_, Sep 24 2012
%o A113000 (PARI) list(lim)=my(v=List(), L=(lim+2)\3, t); forprime(p=3, L\3, forprime(q=3, min(L\p, p), t=3*p*q-2; if(t%12==1 && isprime(t) && isprime((t+1)/2) && bigomega(t+3)==4, listput(v, t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 01 2017
%Y A113000 Cf. A112998.
%K A113000 nonn,easy
%O A113000 1,1
%A A113000 _Zak Seidov_, Jan 03 2006
%E A113000 Edited by _Charles R Greathouse IV_, Apr 20 2010