cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113019 (Number of digits of n) raised to the power of (the digital root of n).

This page as a plain text file.
%I A113019 #17 Nov 17 2019 15:09:35
%S A113019 1,1,1,1,1,1,1,1,1,1,2,4,8,16,32,64,128,256,512,2,4,8,16,32,64,128,
%T A113019 256,512,2,4,8,16,32,64,128,256,512,2,4,8,16,32,64,128,256,512,2,4,8,
%U A113019 16,32,64,128,256,512,2,4,8,16,32,64,128,256,512,2,4,8,16,32
%N A113019 (Number of digits of n) raised to the power of (the digital root of n).
%C A113019 n=1 and 32 are fixed points. Are there any others?
%C A113019 First occurrence of k: 1,10,100,11,10000,100000,1000000,12,101,1000000000, ..., . - _Robert G. Wilson v_
%H A113019 Nathaniel Johnston, <a href="/A113019/b113019.txt">Table of n, a(n) for n = 0..10000</a>
%F A113019 a(ijk...) [m digits ijk...] = m^(i+j+k+..[one digit])
%F A113019 a(n)=A055642(n)^A010888(n). - _Robert G. Wilson v_
%e A113019 a(0) = 1^0 = 1.
%e A113019 a(9) = 1^9 = 1.
%e A113019 a(10) = 2^(1+0) = 2.
%e A113019 a(89) = 2^(8+9=17=>1+7) = 2^8 = 256.
%p A113019 A113019 := proc(n) if(n=0)then return 1:fi: return length(n)^(((n-1) mod 9) + 1): end: seq(A113019(n),n=0..100); # _Nathaniel Johnston_, May 04 2011
%t A113019 f[n_] := If[n == 0, 1, Floor[ Log[10, 10n]]^(Mod[n - 1, 9] + 1)]; Table[ f[n], {n, 0, 73}] (* _Robert G. Wilson v_, Jan 04 2006 *)
%o A113019 (PARI) apply( A113019(n)=(logint(n+!n,10)+1)^((n-1)%9+1), [0..99]) \\ _M. F. Hasler_, Nov 17 2019
%Y A113019 Cf. A101337.
%K A113019 base,easy,nonn
%O A113019 0,11
%A A113019 _Alexandre Wajnberg_, Jan 03 2006