cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113025 Triangle of integer coefficients of polynomials P(n,x) of degree n, and falling powers of x, arising in diagonal Padé approximation of exp(x).

This page as a plain text file.
%I A113025 #36 Feb 16 2025 08:32:59
%S A113025 1,1,2,1,6,12,1,12,60,120,1,20,180,840,1680,1,30,420,3360,15120,30240,
%T A113025 1,42,840,10080,75600,332640,665280,1,56,1512,25200,277200,1995840,
%U A113025 8648640,17297280,1,72,2520,55440,831600,8648640,60540480,259459200
%N A113025 Triangle of integer coefficients of polynomials P(n,x) of degree n, and falling powers of x, arising in diagonal Padé approximation of exp(x).
%C A113025 exp(x) is well approximated by P(n,x)/P(n,-x). (P(n,1)/P(n,-1))_{n>=0} is a sequence of convergents to e: i.e., P(n,1) = A001517(n) and P(n,-1) = abs(A002119(n)).
%C A113025 From _Roger L. Bagula_, Feb 15 2009: (Start)
%C A113025 The row polynomials in rising powers of x are y_n(2*x) = Sum_{k=0..n} binomial(n+k, 2*k)*((2*k)!/k!)*x^k, for n >= 0, with the Bessel polynomials y_n(x) of Krall and Frink, eq. (3), (see also Grosswald, p. 18, eq. (7) and Riordan, p. 77). For the coefficients see A001498. [Edited by _Wolfdieter Lang_, May 11 2018]
%C A113025 P(n, x) = Sum_{k=0..n} (n+k)!/(k!*(n-k)!)*x^(n-k).
%C A113025 Row sums are A001517. (End)
%D A113025 J. Riordan, Combinatorial Identities, Wiley, 1968, p.77, 10. [From _Roger L. Bagula_, Feb 15 2009]
%H A113025 G. C. Greubel, <a href="/A113025/b113025.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H A113025 E. Grosswald, <a href="http://dx.doi.org/10.1007/BFb0063138">Bessel Polynomials: Recurrence Relations</a>, Lecture Notes Math. vol. 698, 1978, p. 18.
%H A113025 H. L. Krall and Orrin Frink, <a href="https://doi.org/10.1090/S0002-9947-1949-0028473-1">A New Class of Orthogonal Polynomials: The Bessel Polynomials</a>, Trans. Amer. Math. Soc. 65, 100-115, 1949.
%H A113025 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PadeApproximant.html">Padé approximants</a>.
%H A113025 F. Wielonsky, <a href="https://doi.org/10.1006/jath.1996.3081">Asymptotics of diagonal Hermite-Pade approximants to exp(x)</a>, J. Approx. Theory 90 (1997) 283-298.
%F A113025 From _Wolfdieter Lang_, May 11 2018: (Start)
%F A113025 T(n, k) = binomial(n+k, 2*k)*(2*k)!/k! = (n+k)!/((n-k)!*k!), n >= 0, k = 0..n. (see the R. L. Baluga comment above).
%F A113025 Recurrence (adapted from A001498, see the Grosswald reference): For n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = 2*(2*n-1)*a(n-1, k-1) + a(n-2, k).
%F A113025 (End)
%F A113025 T(n, k) = Pochhammer(n+1, k)*binomial(n, k). # _Peter Luschny_, May 11 2018
%e A113025 P(3,x) = x^3 + 12*x^2 + 60*x + 120.
%e A113025 y_3(2*x) = 1 + 12*x + 60*x^2 + 120*x^3. (Bessel with x -> 2*x).
%e A113025 From _Roger L. Bagula_, Feb 15 2009: (Start)
%e A113025 {1},
%e A113025 {1, 2},
%e A113025 {1, 6, 12},
%e A113025 {1, 12, 60, 120},
%e A113025 {1, 20, 180, 840, 1680},
%e A113025 {1, 30, 420, 3360, 15120, 30240},
%e A113025 {1, 42, 840, 10080, 75600, 332640, 665280},
%e A113025 {1, 56, 1512, 25200, 277200, 1995840, 8648640, 17297280},
%e A113025 {1, 72, 2520, 55440, 831600, 8648640, 60540480, 259459200, 518918400},
%e A113025 {1, 90, 3960, 110880, 2162160, 30270240, 302702400, 2075673600, 8821612800, 17643225600},
%e A113025 {1, 110, 5940, 205920, 5045040, 90810720, 1210809600, 11762150400, 79394515200, 335221286400, 670442572800} (End)
%p A113025 T := (n, k) -> pochhammer(n+1, k)*binomial(n, k):
%p A113025 seq(seq(T(n, k), k=0..n), n=0..9); # _Peter Luschny_, May 11 2018
%t A113025 L[n_, m_] = (n + m)!/((n - m)!*m!);
%t A113025 Table[Table[L[n, m], {m, 0, n}], {n, 0, 10}];
%t A113025 Flatten[%] (* _Roger L. Bagula_, Feb 15 2009 *)
%t A113025 P[x_, n_] := Sum[ (2*n - k)!/(k!*(n - k)!)*x^(k), {k, 0, n}]; Table[Reverse[CoefficientList[P[x, n], x]], {n,0,10}] // Flatten (* _G. C. Greubel_, Aug 15 2017 *)
%o A113025 (PARI) T(n,k)=(n+k)!/k!/(n-k)!
%Y A113025 Cf. A001498, A001517, A303986 (signed version).
%K A113025 nonn,tabl,easy
%O A113025 0,3
%A A113025 _Benoit Cloitre_, Jan 03 2006