This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113028 #33 May 08 2024 14:49:33 %S A113028 1,2,54,108,152,16200,2042460,4416720,9867312,2334364200,421877610, %T A113028 1779700673520,4025593863720,8605596007008,1147797065081426760, %U A113028 2851241701975626960,6723295828605676320,5463472083393768444000,32677216797923569872,29966837620559153371200 %N A113028 a(n) is the largest integer whose base n digits are all different that is divisible by each of its individual digits. %C A113028 Note that this definition precludes the digit 0 appearing anywhere in the base n representation of the number. %D A113028 "Enigma 1343: Digital Dividend", New Scientist, Jun 04 2005, p. 28. %H A113028 Jes Wolfe, <a href="/A113028/b113028.txt">Table of n, a(n) for n = 2..48</a> %H A113028 Michael S. Branicky, <a href="/A113028/a113028.py.txt">Python program</a> %H A113028 Jes Wolfe, <a href="/A113028/a113028.txt">Even faster python program</a> %e A113028 a(2) = 1 trivially because that is the only number in base 2 that does not contain 0. %e A113028 a(4) = 54 because in base 4, 54 is 312_4. There is only one number containing different digits and no zeros higher than that, namely 321_4, but 321_4 is not divisible by 2. %o A113028 (Python) # see link for a faster version %o A113028 from itertools import permutations %o A113028 def fromdigits(d, b): %o A113028 n = 0 %o A113028 for di in d: n *= b; n += di %o A113028 return n %o A113028 def a(n): %o A113028 for digits in range(n-1, 0, -1): %o A113028 for p in permutations(range(n-1, 0, -1), r=digits): %o A113028 t = fromdigits(p, n) %o A113028 if all(t%di == 0 for di in p): %o A113028 return t %o A113028 print([a(n) for n in range(2, 11)]) # _Michael S. Branicky_, Jan 17 2022 %K A113028 nonn,base %O A113028 2,2 %A A113028 _Peter Boothe_, Jan 03 2006 %E A113028 a(11)-a(13) from Francis Carr (fcarr(AT)alum.mit.edu), Feb 08 2006 %E A113028 a(14) from _Michael S. Branicky_, Jan 17 2022 %E A113028 a(15)-a(17) from _Michael S. Branicky_, Jan 20 2022 %E A113028 a(18)-a(21) from _Jes Wolfe_, Apr 26 2024