This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113106 #6 Mar 13 2015 22:31:56 %S A113106 1,1,1,5,6,1,85,115,31,1,4985,7420,2590,156,1,1082905,1744965,723370, %T A113106 62090,781,1,930005021,1601759426,752616215,82390620,1532715,3906,1, %U A113106 3306859233805,6024941167511,3117415999361,409321203715,10025307495 %N A113106 Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^5](n-1,k-1) + [T^5](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^5 is the matrix 5th power of T. %C A113106 Column 0 of the matrix power p, T^p, equals the number of 5-tournament sequences having initial term p (see A113103 for definitions). %F A113106 Let GF[T] denote the g.f. of triangular matrix T. Then GF[T] = 1 + x*(1+y)*GF[T^5] and for all integer p>=1: GF[T^p] = 1 + x*Sum_{j=1..p} GF[T^(p+4*j)] + x*y*GF[T^(5*p)]. %e A113106 Triangle begins: %e A113106 1; %e A113106 1,1; %e A113106 5,6,1; %e A113106 85,115,31,1; %e A113106 4985,7420,2590,156,1; %e A113106 1082905,1744965,723370,62090,781,1; %e A113106 930005021,1601759426,752616215,82390620,1532715,3906,1; %e A113106 Matrix 4th power T^4 (A113112) begins: %e A113106 1; %e A113106 4,1; %e A113106 56,24,1; %e A113106 2704,1576,124,1; %e A113106 481376,346624,39376,624,1; ... %e A113106 where column 0 equals A113113. %e A113106 Matrix 5th power T^5 (A113114) begins: %e A113106 1; %e A113106 5,1; %e A113106 85,30,1; %e A113106 4985,2435,155,1; %e A113106 1082905,662060,61310,780,1; %e A113106 930005021,671754405,80861810,1528810,3905,1; ... %e A113106 where adjacent sums in row n of T^5 forms row n+1 of T. %o A113106 (PARI) {T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return(M[n+1,k+1])} %Y A113106 Cf. A097710, A113084, A113095; A113103, A113107 (column 0), A113108 (T^2), A113110 (T^3), A113112 (T^4), A113112 (T^5). %K A113106 nonn,tabl %O A113106 0,4 %A A113106 _Paul D. Hanna_, Oct 14 2005