This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113111 #5 Mar 30 2012 18:36:51 %S A113111 1,3,33,1251,173505,94216515,210576669921,2002383115518243, %T A113111 82856383278525698433,15166287556997012904054915, %U A113111 12437232461209961704387810340769 %N A113111 Number of 5-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 3 and t_i = 3 (mod 4) and t_{i+1} <= 5*t_i for 1<i<n. %C A113111 Equals column 0 of triangle A113110, which is the matrix cube of triangle A113106, which satisfies the recurrence: A113106(n,k) = [A113106^5](n-1,k-1) + [A113106^5](n-1,k). %H A113111 M. Cook and M. Kleber, <a href="http://www.combinatorics.org/Volume_7/Abstracts/v7i1r44.html">Tournament sequences and Meeussen sequences</a>, Electronic J. Comb. 7 (2000), #R44. %e A113111 The tree of 5-tournament sequences of descendents %e A113111 of a node labeled (3) begins: %e A113111 [3]; generation 1: 3->[7,11,15]; %e A113111 generation 2: 7->[11,15,19,23,27,31,35], %e A113111 11->[15,19,23,27,31,35,39,43,47,51,55], %e A113111 15->[19,23,27,31,35,39,43,47,51,55,59,63,67,71,75]; ... %e A113111 Then a(n) gives the number of nodes in generation n. %e A113111 Also, a(n+1) = sum of labels of nodes in generation n. %o A113111 (PARI) {a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return((M^3)[n+1,1])} %Y A113111 Cf. A008934, A113077, A113078, A113079, A113085, A113089, A113096, A113098, A113100, A113107, A113109, A113113. %K A113111 nonn %O A113111 0,2 %A A113111 _Paul D. Hanna_, Oct 14 2005