cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113139 Number triangle, equal to half of Delannoy square array A008288.

This page as a plain text file.
%I A113139 #28 Feb 19 2020 00:57:43
%S A113139 1,3,1,13,5,1,63,25,7,1,321,129,41,9,1,1683,681,231,61,11,1,8989,3653,
%T A113139 1289,377,85,13,1,48639,19825,7183,2241,575,113,15,1,265729,108545,
%U A113139 40081,13073,3649,833,145,17,1,1462563,598417,224143,75517,22363,5641
%N A113139 Number triangle, equal to half of Delannoy square array A008288.
%C A113139 Row sums are A047781(n+1). Diagonal sums are A113140. Inverse is A113141.
%H A113139 Peter Bala, <a href="/A260492/a260492.pdf">Notes on generalized Riordan arrays</a>
%H A113139 Peter Bala, <a href="/A264772/a264772_1.pdf">A 4-parameter family of embedded Riordan arrays</a>
%F A113139 T(n, k) = Sum_{j=0..n} C(n-k, j)*C(n+j, k+j).
%F A113139 T(n, k) = Sum_{j=0..n} C(n, j)*C(n-k, j-k)*2^(n-j).
%F A113139 From _Peter Bala_, Dec 09 2015: (Start)
%F A113139 T(n,k) = A008288(n - k, n).
%F A113139 O.g.f.: 2/( sqrt(x^2 - 6*x + 1)*(t*sqrt(x^2 - 6*x + 1) + t*x - t + 2) ) = 1 + (3 + t)*x + (13 + 5*t + t^2)*x^2 + ....
%F A113139 Riordan array (f(x), x*g(x)), where f(x) = 1/sqrt(1 - 6*x + x^2) is the o.g.f. for the central Delannoy numbers, A001850, and g(x) = 1/x* revert( x*(1 - x)/(1 + x) ) = 1 + 2*x + 6*x^2 + 22*x^3 + 90*x^4 + 394*x^5 + ... is the o.g.f. for the large Schroder numbers, A006318.
%F A113139 Read as a square array, this is the generalized Riordan array (f(x), g(x)) in the sense of the Bala link, which factorizes as (1 + x*g'(x)/g(x), x*g(x)) * (1/(1 - x), (1 + x)/(1 - x)) = A110171 * A008288. See the example below. (End)
%F A113139 T(n,k) = (-1)^(n-k)*hypergeom([n+1, -n+k], [1], 2). - _Peter Luschny_, Mar 02 2017
%F A113139 From _Peter Bala_, Feb 16 2020: (Start)
%F A113139 T(n,k) = P(n-k, k, 0, 3), where P(n, alpha, beta, x) is the n-th Jacobi polynomial with parameters alpha and beta.
%F A113139 T(n,k) = binomial(n,k) * hypergeom( [n + 1, k - n], [k + 1], -1 ).
%F A113139 The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 + x)^n/(1 - x)^(n+1) about 0. For example, for n = 4, (1 + x)^4/(1 - x)^5 = 1 + 9*x + 41*x^2 + 129*x^3 + 321*x^4 + O(x^5). Cf. A110171. (End)
%e A113139 Triangle begins
%e A113139      1;
%e A113139      3,    1;
%e A113139     13,    5,    1;
%e A113139     63,   25,    7,   1;
%e A113139    321,  129,   41,   9,  1;
%e A113139   1683,  681,  231,  61, 11,  1;
%e A113139   8989, 3653, 1289, 377, 85, 13, 1;
%e A113139   ...
%e A113139 A113139 as a square array = A110171 * A008288:
%e A113139   / 1   1   1   1 ... \   / 1         \ / 1 1  1  1 ...\
%e A113139   | 3   5   7   9 ... |   | 2  1       || 1 3  5  7 ...|
%e A113139   |13  25  41  61 ... | = | 8  4 1     || 1 5 13 25 ...|
%e A113139   |63 129 231 377 ... |   |38 18 6 1   || 1 7 25 63 .. |
%e A113139   |...                |   |...         || 1...         |
%e A113139 - _Peter Bala_, Dec 09 2015
%p A113139 T := (n,k) -> (-1)^(n-k)*hypergeom([n+1, -n+k], [1], 2):
%p A113139 seq(seq(simplify(T(n,k)),k=0..n),n=0..8); # _Peter Luschny_, Mar 02 2017
%t A113139 Table[Sum[Binomial[n - k, j] Binomial[n + j, k + j], {j, 0, n}], {n, 0, 9}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Dec 09 2015 *)
%Y A113139 A001850 (column 0), A002002 (column 1), A026002 (column 2), A190666 (column 3), A047781 (row sums), A113140 (diagonal sums), A113141 (matrix inverse). Cf. A006318, A008288, A110171.
%K A113139 easy,nonn,tabl
%O A113139 0,2
%A A113139 _Paul Barry_, Oct 15 2005