cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113155 Primes such that the sum of the predecessor and successor primes is divisible by 31.

This page as a plain text file.
%I A113155 #9 Nov 21 2013 12:48:45
%S A113155 311,401,863,907,1117,1213,1237,1399,1427,2333,3299,3533,3821,3967,
%T A113155 4243,4493,5273,5779,6199,6521,7069,8219,8369,8623,8741,8837,8929,
%U A113155 9277,9613,10139,10601,10631,10939,11621,11779,12197,12241,12343,12401,12457
%N A113155 Primes such that the sum of the predecessor and successor primes is divisible by 31.
%C A113155 A112681 is mod 3 analogy. A112794 is mod 5 analogy. A112731 is mod 7 analogy. A112789 is mod 11 analogy. A112795 is mod 13 analogy. A112796 is mod 17 analogy. A112804 is mod 19 analogy. A112847 is mod 23 analogy. A112859 is mod 29 analogy.
%H A113155 Harvey P. Dale, <a href="/A113155/b113155.txt">Table of n, a(n) for n = 1..1000</a>
%F A113155 a(n) = prime(i) is in this sequence iff prime(i-1)+prime(i+1) = 0 mod 31. a(n) = A000040(i) is in this sequence iff A000040(i-1)+A000040(i+1) = 0 mod 31.
%e A113155 a(1) = 311 since prevprime(311) + nextprime(311) = 307 + 313 = 620 = 31 * 20.
%e A113155 a(2) = 401 since prevprime(401) + nextprime(401) = 397 + 409 = 806 = 31 * 26.
%e A113155 a(3) = 863 since prevprime(863) + nextprime(863) = 859 + 877 = 1736 = 31 * 56.
%e A113155 a(4) = 907 since prevprime(907) + nextprime(907) = 887 + 911 = 1798 = 31 * 58.
%t A113155 Prime@Select[Range[2, 1531], Mod[Prime[ # - 1] + Prime[ # + 1], 31] == 0 &] (* _Robert G. Wilson v_ *)
%t A113155 Transpose[Select[Partition[Prime[Range[1500]],3,1],Divisible[#[[1]]+#[[3]], 31]&]][[2]] (* _Harvey P. Dale_, Mar 23 2012 *)
%Y A113155 Cf. A000040, A112681, A112794, A112731, A112789, A112795, A112796, A112804, A112847, A112859, A113155, A113156, A113157, A113158.
%K A113155 easy,nonn
%O A113155 1,1
%A A113155 _Jonathan Vos Post_, Jan 05 2006
%E A113155 Corrected and extended by _Robert G. Wilson v_, Jan 11 2006