cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113156 Primes such that the sum of the predecessor and successor primes is divisible by 37.

This page as a plain text file.
%I A113156 #15 Feb 07 2015 12:32:28
%S A113156 181,443,557,661,967,1109,1553,1951,2069,2441,2551,3257,3371,4001,
%T A113156 4783,5179,5987,6143,6217,6473,6701,6803,6841,7213,8431,8663,8839,
%U A113156 8887,9283,9511,9839,9883,10177,10589,10771,10883,11059,11093,11173,11437,11657
%N A113156 Primes such that the sum of the predecessor and successor primes is divisible by 37.
%C A113156 A112681 is mod 3 analogy. A112794 is mod 5 analogy. A112731 is mod 7 analogy. A112789 is mod 11 analogy. A112795 is mod 13 analogy. A112796 is mod 17 analogy. A112804 is mod 19 analogy. A112847 is mod 23 analogy. A112859 is mod 29 analogy.
%H A113156 Harvey P. Dale, <a href="/A113156/b113156.txt">Table of n, a(n) for n = 1..1000</a>
%F A113156 a(n) = prime(i) is in this sequence iff prime(i-1)+prime(i+1) = 0 mod 37. a(n) = A000040(i) is in this sequence iff A000040(i-1)+A000040(i+1) = 0 mod 37.
%e A113156 a(1) = 181 since prevprime(181) + nextprime(181) = 179 + 191 = 370 = 37 * 10.
%e A113156 a(2) = 443 since prevprime(443) + nextprime(443) = 439 + 449 = 888 = 37 * 24.
%e A113156 a(3) = 557 since prevprime(557) + nextprime(557) = 547 + 563 = 1110 = 37 * 30.
%e A113156 a(4) = 661 since prevprime(661) + nextprime(661) = 659 + 673 = 1332 = 37 * 36.
%t A113156 Prime@Select[Range[2, 1463], Mod[Prime[ # - 1] + Prime[ # + 1], 37] == 0 &] (* _Robert G. Wilson v_ *)
%t A113156 Transpose[Select[Partition[Prime[Range[1500]],3,1],Divisible[First[#]+ Last[#],37]&]][[2]] (* _Harvey P. Dale_, Dec 19 2011 *)
%Y A113156 Cf. A000040, A112681, A112794, A112731, A112789, A112795, A112796, A112804, A112847, A112859, A113155, A113156, A113157, A113158.
%K A113156 easy,nonn
%O A113156 1,1
%A A113156 _Jonathan Vos Post_, Jan 05 2006
%E A113156 More terms from _Robert G. Wilson v_, Jan 11 2006