This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113158 #6 Oct 31 2013 12:17:34 %S A113158 521,821,859,1069,1459,1549,2203,2411,2539,2837,2969,3011,3089,3359, %T A113158 3613,3823,4259,4339,4561,4643,4783,5503,5557,6067,6619,6967,7481, %U A113158 7699,7741,8263,8779,9419,10103,12041,12379,12641,12899,13417,13721,13759 %N A113158 Primes such that the sum of the predecessor and successor primes is divisible by 43. %C A113158 A112681 is mod 3 analogy. A112794 is mod 5 analogy. A112731 is mod 7 analogy. A112789 is mod 11 analogy. A112795 is mod 13 analogy. A112796 is mod 17 analogy. A112804 is mod 19 analogy. A112847 is mod 23 analogy. A112859 is mod 29 analogy. %F A113158 a(n) = prime(i) is in this sequence iff prime(i-1)+prime(i+1) = 0 mod 43. a(n) = A000040(i) is in this sequence iff A000040(i-1)+A000040(i+1) = 0 mod 43. %e A113158 a(1) = 521 since prevprime(521) + nextprime(521) = 509 + 523 = 1032 = 43 * 24. %e A113158 a(2) = 821 since prevprime(821) + nextprime(821) = 811 + 823 = 1634 = 43 * 38. %e A113158 a(3) = 859 since prevprime(859) + nextprime(859) = 857 + 863 = 1720 = 43 * 40. %e A113158 a(4) = 1069 since prevprime(1069)+nextprime(1069) = 1063+1087 = 2150 = 43 * 50. %t A113158 Prime@Select[Range[2, 1657], Mod[Prime[ # - 1] + Prime[ # + 1], 43] == 0 &] (* _Robert G. Wilson v_ *) %Y A113158 Cf. A000040, A112681, A112794, A112731, A112789, A112795, A112796, A112804, A112847, A112859, A113155, A113156, A113157, A113158. %K A113158 easy,nonn %O A113158 1,1 %A A113158 _Jonathan Vos Post_, Jan 05 2006 %E A113158 More terms from _Robert G. Wilson v_, Jan 11 2006