This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113170 #9 May 18 2017 02:37:48 %S A113170 1,4,33,376,5665,115356,3014209,95722288,3619661121,161338248820, %T A113170 8349617508961,493959321484584,33041900704133473,2479933070973253516, %U A113170 207343189445230918785,19175058576632809926496,1949302342535131018462849,216707770770991401785821668 %N A113170 Ascending descending base exponent transform of odd numbers A005408. %C A113170 A003101 is the ascending descending base exponent transform of natural numbers A000027. The ascending descending base exponent transform applied to the Fibonacci numbers is A113122; applied to the tribonacci numbers is A113153; applied to the Lucas numbers is A113154. The parity of this sequence cycles odd, even, odd, even, ... There is no nontrivial integer fixed point of the transform. %H A113170 G. C. Greubel, <a href="/A113170/b113170.txt">Table of n, a(n) for n = 1..295</a> %F A113170 a(1) = 1. For n>1: a(n) = Sum_{i=1..n} (2n+1)^(2n-i). %e A113170 a(2) = 4 because 1^3 + 3^1 = 1 + 3 = 4. %e A113170 a(3) = 33 because 1^5 + 3^3 + 5^1 = 1 + 27 + 5 = 33. %e A113170 a(4) = 406 because 1^7 + 3^5 + 5^3 + 7^1 = 1 + 243 + 125 + 7 = 376. %e A113170 a(5) = 5665 because 1^9 + 3^7 + 5^5 + 7^3 + 9^1 = 5665. %e A113170 a(6) = 115356 = 1^11 + 3^9 + 5^7 + 7^5 + 9^3 + 11^1. %e A113170 a(7) = 3014209 = 1^13 + 3^11 + 5^9 + 7^7 + 9^5 + 11^3 + 13^1. %e A113170 a(8) = 95722288 = 1^15 + 3^13 + 5^11 + 7^9 + 9^7 + 11^5 + 13^3 + 15^1. %e A113170 a(9) = 3619661121 = 1^17 + 3^15 + 5^13 + 7^11 + 9^9 + 11^7 + 13^5 + 15^3 + 17^1. %e A113170 a(10) = 161338248820 = 1^19 + 3^17 + 5^15 + 7^13 + 9^11 + 11^9 + 13^7 + 15^5 + 17^3 + 19^1. %t A113170 Table[Sum[(2 k + 1)^(2 n - 2 k + 1), {k, 1, n}], {n, 0, 10}] + 1 (* _G. C. Greubel_, May 18 2017 *) %o A113170 (PARI) for(n=0,25, print1(1 + sum(k=1,n, (2*k+1)^(2*n-2*k+1)), ", ")) \\ _G. C. Greubel_, May 18 2017 %Y A113170 Cf. A005408, A113122, A113153, A113154. %K A113170 easy,nonn %O A113170 1,2 %A A113170 _Jonathan Vos Post_, Jan 06 2006