This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113171 #9 Jul 18 2025 04:52:49 %S A113171 660,1092,1140,1155,1260,1320,1365,1380,1428,1540,1560,1740,1785,1820, %T A113171 1860,1980,1995,2184,2220,2340,2380,2415,2436,2460,2508,2580,2604, %U A113171 2660,2805,2820,2856,2860,2940,3003,3036,3060,3108,3120,3135,3180,3192,3220,3300 %N A113171 Short legs 'A' of exactly 7 primitive Pythagorean triangles. %H A113171 Ray Chandler, <a href="/A113171/b113171.txt">Table of n, a(n) for n = 1..10000</a> %F A113171 a^2+b^2=c^2 %e A113171 Examples of triples: 660.779.1021, 660.989.1189, 660.2989.3061, 660.4331.4381, 660.12091.12109, 660.27221.27229, 660.108899.108901 %e A113171 1092.1325.1717, 1092.1595.1933, 1092.6035.6133, 1092.8245.8317, 1092.33115.33133, 1092.74525.74533, 1092.298115.298117 %t A113171 PythagoreanAs[a_]:=(q={};k=0;Do[y=(a^2+b^2)^0.5;c=IntegerPart[y];If[c==y,p=0;If[GCD[a,b,c]==1,AppendTo[q,a.b.c];k++ ]],{b,a+1,a^2}];PrependTo[q,k];q);lst={};Do[If[PythagoreanAs[n][[1]]==7,Print[n];AppendTo[lst,n]],{n,6*10^2,2*10^3}];lst %Y A113171 Cf. A056866 Orders of non-solvable groups. A093006 Referring to the triangle in A093005, sequence contains the least term with maximal number of divisors. A138605 Short legs of more than 3 primitive Pythagorean triangles. A033993 Numbers that are divisible by exactly four different primes. %K A113171 nonn %O A113171 1,1 %A A113171 _Vladimir Joseph Stephan Orlovsky_, Aug 25 2008 %E A113171 More terms from _Ray Chandler_, Jan 22 2020