This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113175 #21 Jan 14 2025 16:43:01 %S A113175 1,1,2,1,5,2,13,1,4,5,89,2,233,13,10,1,1597,4,4181,5,26,89,28657,2,25, %T A113175 233,8,13,514229,10,1346269,1,178,1597,65,4,24157817,4181,466,5, %U A113175 165580141,26,433494437,89,20,28657,2971215073,2,169,25,3194,233 %N A113175 Replace each prime p in prime-factorization of n with p-th Fibonacci number. %C A113175 If, for p = prime, p^(m_{n,p}) is highest power of p dividing n, m = nonnegative integer, then a(n) is product over all primes of F(p)^(m_{n,p}), where F(p) = p-th Fibonacci number (A000045). %H A113175 Danny Rorabaugh, <a href="/A113175/b113175.txt">Table of n, a(n) for n = 1..4000</a> %F A113175 Totally multiplicative with a(p) = F(p). - _Franklin T. Adams-Watters_, Jun 05 2006 %e A113175 63 = 3^2 * 7^1. So a(63) = F(3)^2 * F(7)^1 = 4 * 13 = 52. %p A113175 a:= n-> mul(combinat[fibonacci](i[1])^i[2], i=ifactors(n)[2]): %p A113175 seq(a(n), n=1..52); # _Alois P. Heinz_, Jan 14 2025 %t A113175 Times@@@Table[Fibonacci[#[[1]]]^#[[2]]&/@FactorInteger[n],{n,60}] (* _Harvey P. Dale_, Mar 30 2024 *) %o A113175 (Sage) [1]+[prod([fibonacci(x[0])^x[1] for x in factor(n)]) for n in range(2,53)] # _Danny Rorabaugh_, Apr 03 2015 %Y A113175 Cf. A113176, A000045. %K A113175 mult,nonn,easy %O A113175 1,3 %A A113175 _Leroy Quet_, Oct 16 2005 %E A113175 More terms from Esa Peuha (esa.peuha(AT)helsinki.fi), Oct 26 2005 %E A113175 Previous Mathematica program deleted by _Harvey P. Dale_, Mar 30 2024