cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113176 Product_{p|n} F(p), where F(p) is the p-th Fibonacci number and where the product is over the distinct prime divisors of n.

This page as a plain text file.
%I A113176 #21 May 31 2019 20:06:55
%S A113176 1,1,2,1,5,2,13,1,2,5,89,2,233,13,10,1,1597,2,4181,5,26,89,28657,2,5,
%T A113176 233,2,13,514229,10,1346269,1,178,1597,65,2,24157817,4181,466,5,
%U A113176 165580141,26,433494437,89,10,28657,2971215073,2,13,5,3194,233
%N A113176 Product_{p|n} F(p), where F(p) is the p-th Fibonacci number and where the product is over the distinct prime divisors of n.
%H A113176 Danny Rorabaugh, <a href="/A113176/b113176.txt">Table of n, a(n) for n = 1..4000</a>
%F A113176 Multiplicative with a(p^e) = F(p). - _Franklin T. Adams-Watters_, Jun 05 2006
%e A113176 63 = 3^2 * 7^1. So a(63) = F(3) * F(7) = 2 * 13 = 26.
%t A113176 b[t_]:=Fibonacci[First[t]] a[n_]:=Apply[Times, Map[b, FactorInteger[n]]] (* Esa Peuha, Oct 26 2005 *)
%t A113176 Table[Times@@(Fibonacci[#]&/@FactorInteger[n][[All,1]]),{n,60}] (* _Harvey P. Dale_, May 31 2019 *)
%o A113176 (Sage) [1]+[prod([fibonacci(p) for p in prime_factors(n)]) for n in range(2,53)] # _Danny Rorabaugh_, Apr 03 2015
%Y A113176 Cf. A113175, A000045.
%K A113176 nonn,mult,easy
%O A113176 1,3
%A A113176 _Leroy Quet_, Oct 16 2005
%E A113176 More terms from Esa Peuha (esa.peuha(AT)helsinki.fi), Oct 26 2005