cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113197 Positive integers sorted by rote weight, rote height and rote quench.

This page as a plain text file.
%I A113197 #7 Nov 23 2013 20:14:54
%S A113197 1,2,3,4,6,9,5,7,8,16,12,18,10,14,13,23,25,27,49,64,81,512,11,17,19,
%T A113197 32,53,128,256,65536,36,26,46,50,54,98,125,162,2401,15,21,37,61,169,
%U A113197 343,529,625,729,4096,19683,262144,20,24,28,48,22,34,38,106,29,41,43,83,97
%N A113197 Positive integers sorted by rote weight, rote height and rote quench.
%C A113197 For positive integer m, the rote weight in gammas is g(m) = A062537(m), the rote height in gammas is h(m) = A109301(m) and the rote quench or primal code characteristic is q(m) = A108352(m).
%H A113197 J. Awbrey, <a href="http://stderr.org/pipermail/inquiry/2005-October/003122.html">Table for Rote Weights 0 to 5</a>
%H A113197 J. Awbrey, <a href="https://oeis.org/wiki/Riffs_and_Rotes">Riffs and Rotes</a>
%e A113197 Primal Functions, Primal Codes, Sort Parameters and Subtotals
%e A113197 ================================================================
%e A113197 Primal Function | ` ` ` Primal Code ` = ` a | g h q | r | s | t
%e A113197 ================================================================
%e A113197 { } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 0 1 | 1 | 1 | 1
%e A113197 ================================================================
%e A113197 1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 1 0 | 1 | 1 | 1
%e A113197 ================================================================
%e A113197 2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 2 2 | ` | ` |
%e A113197 1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 2 2 | 2 | 2 | 2
%e A113197 ================================================================
%e A113197 1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 2 0 | ` | ` |
%e A113197 2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 2 0 | 2 | 2 |
%e A113197 ----------------+---------------------------+-------+---+---+---
%e A113197 3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 3 2 | ` | ` |
%e A113197 4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 3 2 | ` | ` |
%e A113197 1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 3 2 | ` | ` |
%e A113197 1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 3 2 | 4 | 4 | 6
%e A113197 ================================================================
%e A113197 1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 2 0 | ` | ` |
%e A113197 1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 2 0 | 2 | 2 |
%e A113197 ----------------+---------------------------+-------+---+---+---
%e A113197 1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 3 0 | ` | ` |
%e A113197 1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 3 0 | 2 | ` |
%e A113197 ----------------+---------------------------+-------+---+---+---
%e A113197 6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 3 2 | ` | ` |
%e A113197 9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 3 2 | ` | ` |
%e A113197 3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 3 2 | ` | ` |
%e A113197 2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 3 2 | ` | ` |
%e A113197 4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 3 2 | ` | ` |
%e A113197 1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 3 2 | ` | ` |
%e A113197 2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 3 2 | ` | ` |
%e A113197 1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 3 2 | 8 |10 |
%e A113197 ----------------+---------------------------+-------+---+---+---
%e A113197 5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 4 2 | ` | ` |
%e A113197 7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 4 2 | ` | ` |
%e A113197 8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 4 2 | ` | ` |
%e A113197 1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 4 2 | ` | ` |
%e A113197 16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 4 2 | ` | ` |
%e A113197 1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 4 2 | ` | ` |
%e A113197 1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 4 2 | ` | ` |
%e A113197 1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 4 2 | 8 | 8 |20
%e A113197 ================================================================
%e A113197 a = this sequence
%e A113197 g = rote weight in gammas = A062537
%e A113197 h = rote height in gammas = A109301
%e A113197 q = primal code character = A108352
%e A113197 r = number in (g,h,q) set = A113198
%e A113197 s = count in (g, h) class = A111793
%e A113197 t = count in weight class = A061396
%Y A113197 Cf. A061396, A062504, A062537, A062860, A106177, A106178.
%Y A113197 Cf. A108352, A108353, A108370 to A108374, A109300, A109301.
%Y A113197 Cf. A111791 to A111801, A112846, A112868 to A112871, A113198.
%K A113197 nonn,tabf
%O A113197 1,2
%A A113197 _Jon Awbrey_, Oct 18 2005