A113206 Triangle read by rows of generalized Catalan numbers.
1, 1, 0, 1, 1, 0, 2, 0, 1, 1, 0, 3, 5, 3, 0, 1, 1, 0, 4, 12, 14, 12, 4, 0, 1, 1, 0, 5, 22, 55, 42, 55, 22, 5, 0, 1, 1, 0, 6, 35, 140, 273, 132, 273, 140, 35, 6, 0, 1, 1, 0, 7, 51, 285, 969, 1428, 429, 1428, 969, 285, 51, 7, 0, 1, 1, 0, 8, 70, 506, 2530, 7084, 7752, 1430, 7752, 7084
Offset: 0
Examples
.............1 ...........1.0.1 .........1.0.2.0.1 .......1.0.3.5.3.0.1 ....1.0.4.12.14.12.4.0.1 .1.0.5.22.55.42.55.22.5.0.1
Links
- Ph. Leroux, A simple symmetry generating operads related to rooted planar m-ary trees and polygonal numbers, arXiv:math/0512437 [math.CO], 2005.
- Ph. Leroux, A simple symmetry generating operads related to rooted planar m-ary trees and polygonal numbers, J. Integer Seqs., 10 (2007), #07.4.7.
Programs
-
Maple
A070914 := proc(n,k) binomial(n*(k+1),n)/(n*k+1) ; end proc: A113206 := proc(n,k) if k = 2 or k = 2*n-2 then 0 ; else A070914(n-abs(n-k)-1,abs(n-k)+1) ; fi ; end proc: for n from 0 to 10 do for k from 1 to 2*n-1 do printf("%d ",A113206(n,k)) ; od: od: # R. J. Mathar, Feb 08 2008
-
Mathematica
A070914[n_, k_] := Binomial[n*(k + 1), n]/(n*k + 1); A113206[n_, k_] := If[k == 2 || k == 2*n - 2, 0, A070914[n - Abs[n-k] - 1, Abs[n-k] + 1]]; Table[A113206[n, k], {n, 0, 10}, {k, 1, 2*n - 1}] // Flatten (* Jean-François Alcover, Nov 28 2017, after R. J. Mathar *)
Formula
T(n,k) = A070914(n-|n-k|-1,|n-k|+1) if 3<=k<=2n-3 . - R. J. Mathar, Feb 08 2008
Comments