cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113206 Triangle read by rows of generalized Catalan numbers.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 1, 0, 3, 5, 3, 0, 1, 1, 0, 4, 12, 14, 12, 4, 0, 1, 1, 0, 5, 22, 55, 42, 55, 22, 5, 0, 1, 1, 0, 6, 35, 140, 273, 132, 273, 140, 35, 6, 0, 1, 1, 0, 7, 51, 285, 969, 1428, 429, 1428, 969, 285, 51, 7, 0, 1, 1, 0, 8, 70, 506, 2530, 7084, 7752, 1430, 7752, 7084
Offset: 0

Views

Author

N. J. A. Sloane, Jan 07 2006

Keywords

Comments

A dual to Pascal's triangle. Row n has 2n+1 entries.

Examples

			.............1
...........1.0.1
.........1.0.2.0.1
.......1.0.3.5.3.0.1
....1.0.4.12.14.12.4.0.1
.1.0.5.22.55.42.55.22.5.0.1
		

Crossrefs

Programs

  • Maple
    A070914 := proc(n,k) binomial(n*(k+1),n)/(n*k+1) ; end proc:
    A113206 := proc(n,k) if k = 2 or k = 2*n-2 then 0 ; else A070914(n-abs(n-k)-1,abs(n-k)+1) ; fi ; end proc:
    for n from 0 to 10 do for k from 1 to 2*n-1 do printf("%d ",A113206(n,k)) ; od: od: # R. J. Mathar, Feb 08 2008
  • Mathematica
    A070914[n_, k_] := Binomial[n*(k + 1), n]/(n*k + 1);
    A113206[n_, k_] := If[k == 2 || k == 2*n - 2, 0, A070914[n - Abs[n-k] - 1, Abs[n-k] + 1]];
    Table[A113206[n, k], {n, 0, 10}, {k, 1, 2*n - 1}] // Flatten (* Jean-François Alcover, Nov 28 2017, after R. J. Mathar *)

Formula

T(n,k) = A070914(n-|n-k|-1,|n-k|+1) if 3<=k<=2n-3 . - R. J. Mathar, Feb 08 2008