cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113207 Coefficients of inverse of Poincaré series [or Poincare series] of the 5-Gonal operad.

This page as a plain text file.
%I A113207 #23 Nov 11 2023 08:50:13
%S A113207 1,5,38,347,3507,37788,425490,4947239,58944743,715930085,8831390152,
%T A113207 110340491380,1393446215956,17758187064360,228091606247322,
%U A113207 2949707761133535,38374765966463775,501891882459954495,6595106960772794310,87030030852121334835,1152846885317408648715
%N A113207 Coefficients of inverse of Poincaré series [or Poincare series] of the 5-Gonal operad.
%C A113207 Leroux asks: Is there a combinatorial interpretation for these numbers?
%C A113207 Those are the coefficients of the series reverse of the Poincaré series of the 5-Gonal operad, and not of the 5-Tetra operad. The sequence for the 5-Tetra operad is well-known and is A002294. - _Paul Laubie_, Nov 08 2023
%H A113207 Ph. Leroux, <a href="https://arxiv.org/abs/math/0512437">A simple symmetry generating operads related to rooted planar m-ary trees and polygonal numbers</a>, arXiv:math/0512437 [math.CO], 2005.
%H A113207 Ph. Leroux, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Leroux/leroux1.html">A simple symmetry generating operads related to rooted planar m-ary trees and polygonal numbers</a>, J. Integer Seqs., 10 (2007), #07.4.7.
%F A113207 G.f.: series reversion of -(2*t^2-t)/(1+t)^3. - _Paul Laubie_, Nov 08 2023
%o A113207 (Sage) R.<t>=PowerSeriesRing(QQ); (-(2*t^2-t)/(1+t)^3).reverse().list()[1:] # _Paul Laubie_, Nov 08 2023
%K A113207 nonn
%O A113207 1,2
%A A113207 _N. J. A. Sloane_, Jan 07 2006
%E A113207 New offset, name corrected and more terms from _Paul Laubie_, Nov 08 2023