This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113237 #13 May 10 2016 17:38:37 %S A113237 1,1,3,13,49,381,2971,26713,291873,3262969,41245651,569262981, %T A113237 8433896593,136060620853,2342471665899,42987065380561,838321137046081, %U A113237 17272648375895793,375413770580941603,8579701021461918589,205637099039964274161,5158188565847339152621 %N A113237 E.g.f.: exp(x*(1 - x^3 + x^4)/(1-x)). %C A113237 Number of partitions of {1,..,n} into any number of lists of size not equal to 4, where a list means an ordered subset, cf. A000262. %H A113237 Alois P. Heinz, <a href="/A113237/b113237.txt">Table of n, a(n) for n = 0..444</a> %F A113237 Expression as a sum involving generalized Laguerre polynomials, in Mathematica notation: a(n)=n!*Sum[(-1)^k*LaguerreL[n - 4*k, -1, -1]/k!, {k, 0, Floor[n/4]}], n=0, 1.... %F A113237 Recurrence: a(n) = (2*n-1)*a(n-1) - (n-2)*(n-1)*a(n-2) - 4*(n-3)*(n-2)*(n-1)*a(n-4) + 8*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5) - 4*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6). - _Vaclav Kotesovec_, Jun 24 2013 %F A113237 a(n) ~ n^(n-1/4)*exp(-3/2+2*sqrt(n)-n)/sqrt(2) * (1 + 187/(48*sqrt(n))). - _Vaclav Kotesovec_, Jun 24 2013 %p A113237 a:= proc(n) option remember; `if`(n=0, 1, add( %p A113237 `if`(j=4, 0, a(n-j)*binomial(n-1, j-1)*j!), j=1..n)) %p A113237 end: %p A113237 seq(a(n), n=0..30); # _Alois P. Heinz_, May 10 2016 %t A113237 f[n_] := n!*Sum[(-1)^k*LaguerreL[n - 4*k, -1, -1]/k!, {k, 0, Floor[n/4]}]; Table[ f[n], {n, 0, 19}] %t A113237 Range[0, 19]!* CoefficientList[ Series[ Exp[x*(1 - x^3 + x^4)/(1 - x)], {x, 0, 19}], x] (* _Robert G. Wilson v_, Oct 21 2005 *) %Y A113237 Cf. A000262, A052845, A097514, A113235, A113236. %K A113237 nonn %O A113237 0,3 %A A113237 _Karol A. Penson_, Oct 19 2005