cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113275 Lesser of twin primes for which the gap before the following twin primes is a record.

This page as a plain text file.
%I A113275 #52 Dec 25 2024 09:17:28
%S A113275 3,5,17,41,71,311,347,659,2381,5879,13397,18539,24419,62297,187907,
%T A113275 687521,688451,850349,2868959,4869911,9923987,14656517,17382479,
%U A113275 30752231,32822369,96894041,136283429,234966929,248641037,255949949
%N A113275 Lesser of twin primes for which the gap before the following twin primes is a record.
%H A113275 Martin Raab, <a href="/A113275/b113275.txt">Table of n, a(n) for n = 1..82</a> (first 75 terms from Max Alekseyev)
%H A113275 Harvey Dubner, <a href="/A007534/a007534.pdf">Twin Prime Conjectures</a>, Journal of Recreational Mathematics, Vol. 30 (3), 1999-2000.
%H A113275 Alexei Kourbatov, <a href="http://arxiv.org/abs/1301.2242">Maximal gaps between prime k-tuples: a statistical approach</a>, arXiv preprint arXiv:1301.2242 [math.NT], 2013.
%H A113275 Alexei Kourbatov, <a href="http://arxiv.org/abs/1309.4053">Tables of record gaps between prime constellations</a>, arXiv preprint arXiv:1309.4053 [math.NT], 2013.
%H A113275 Alexei Kourbatov and Marek Wolf, <a href="http://arxiv.org/abs/1901.03785">Predicting maximal gaps in sets of primes</a>, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
%H A113275 Mersenneforum, <a href="https://www.mersenneforum.org/showthread.php?t=24303">Gaps between prime pairs (Twin Primes)</a>.
%H A113275 Tomás Oliveira e Silva, <a href="http://sweet.ua.pt/tos/twin_gaps.html">Gaps between twin primes</a>
%F A113275 a(n) = A036061(n) - 2.
%F A113275 a(n) = A036062(n) - A113274(n).
%e A113275 The smallest twin prime pair is 3, 5, then 5, 7 so a(1) = 3; the following pair is 11, 13 so a(2) = 5 because 11 - 5 = 6 > 5 - 3 = 2; the following pair is 17, 19: since 17 - 11 = 6 = 11 - 5 nothing happens; the following pair is 29, 31 so a(3)= 17 because 29 - 17 = 12 > 11 - 5 = 6.
%t A113275 NextLowerTwinPrim[n_] := Block[{k = n + 2}, While[ !PrimeQ[k] || !PrimeQ[k + 2], k++ ]; k]; p = 3; r = 0; t = {3}; Do[q = NextLowerTwinPrim[p]; If[q > r + p, AppendTo[t, p]; r = q - p]; p = q, {n, 10^9}] (* _Robert G. Wilson v_, Oct 22 2005 *)
%Y A113275 Record gaps are given in A113274. Cf. A002386.
%K A113275 nonn
%O A113275 1,1
%A A113275 _Bernardo Boncompagni_, Oct 21 2005
%E A113275 a(22)-a(30) from _Robert G. Wilson v_, Oct 22 2005
%E A113275 Terms up to a(72) are listed in Kourbatov (2013), terms up to a(75) in Oliveira e Silva's website, added by _Max Alekseyev_, Nov 06 2015