cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113299 Expansion of solution to an algebraic functional equation.

This page as a plain text file.
%I A113299 #6 Apr 30 2014 01:37:55
%S A113299 1,3,10,33,110,366,1219,4059,13518,45018,149924,499290,1662787,
%T A113299 5537577,18441799,61416729,204536183,681166986,2268490929,7554756990,
%U A113299 25159612832,83789077212,279042826065,929296530558,3094836925438
%N A113299 Expansion of solution to an algebraic functional equation.
%F A113299 G.f. A(x) = x/((1-B(x))^2-x) where B(x) = g.f. for A001190.
%F A113299 G.f. A(x) = B(x) / (1 - 2*B(x)) where B(x) = g.f. for A093126.
%F A113299 G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v*(1 + 6*u) - u^2*(1 - 8*v).
%F A113299 a(2*n) == 0 (mod 3).
%e A113299 x + 3*x^2 + 10*x^3 + 33*x^4 + 110*x^5 + 366*x^6 + 1219*x^7 + 4059*x^8 +  ...
%o A113299 (PARI) {a(n) = local(A, m); if( n<1, 0, A = 1 + O(x); m=1; while( m<n, m*=2; A = x * subst(A, x, x^2); A = sqrt( A /(1 - 2*A) / x)); A *= x*A; A /= (1 - A); polcoeff(A, n))}
%Y A113299 Cf. A001190, A093126.
%K A113299 nonn
%O A113299 1,2
%A A113299 _Michael Somos_, Oct 24 2005