cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113305 Primes that do not divide any central trinomial coefficient, A002426.

This page as a plain text file.
%I A113305 #14 Mar 04 2024 08:51:25
%S A113305 2,5,11,13,23,29,31,37,53,59,61,67,71,79,83,89,97,101,103,127,137,139,
%T A113305 149,151,157,163,167,181,197,211,223,227,229,239,241,251,257,263,271,
%U A113305 313,317,331,337,349,353,359,367,379,389,397,431,433,449,461,463,479
%N A113305 Primes that do not divide any central trinomial coefficient, A002426.
%C A113305 For primes less than 10^6, the density of these primes is near 0.6075.
%H A113305 G. C. Greubel, <a href="/A113305/b113305.txt">Table of n, a(n) for n = 1..1600</a>
%H A113305 Nadav Kohen, <a href="https://arxiv.org/abs/2403.00149">Uniform Recurrence in the Motzkin Numbers and Related Sequences mod p</a>, arXiv:2403.00149 [math.CO], 2024.
%H A113305 Narad Rampersad and Jeffrey Shallit, <a href="https://arxiv.org/abs/2110.06244">Congruence properties of combinatorial sequences via Walnut and the Rowland-Yassawi-Zeilberger automaton</a>, arXiv:2110.06244 [math.CO], 2021.
%t A113305 nn=1000; a=b=1; t=Join[{1}, Table[c=((2n-1)b+3(n-1)a)/n; a=b; b=c; c, {n, 2, nn}]]; pLst={}; Do[p=Prime[n]; k=1; While[k<p && Mod[t[[k]], p]>0, k++ ]; If[k==p, AppendTo[pLst, p]], {n, PrimePi[nn]}]; pLst
%Y A113305 Cf. A113302 (number of k for which prime(n) divides T(k)), A113303 (least k such that prime(n) divides T(k)).
%K A113305 nonn
%O A113305 1,1
%A A113305 _T. D. Noe_, Oct 24 2005