This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113370 #6 Jun 13 2017 23:21:12 %S A113370 1,1,1,1,4,1,1,28,7,1,1,326,91,10,1,1,5702,1722,190,13,1,1,136724, %T A113370 43764,4945,325,16,1,1,4226334,1415799,163705,10751,496,19,1,1, %U A113370 161385532,56096733,6617605,437723,19896,703,22,1,1,7378504140,2644883675 %N A113370 Triangle P, read by rows, such that P^3 transforms column k of P into column k+1 of P, so that column k of P equals column 0 of P^(3*k+1), where P^3 denotes the matrix cube of P. %C A113370 Triangle A114150 illustrates the identity: R^2*Q^-1 = Q^3*P^-2. %C A113370 See also A114152 for the matrix product: R^3*P^-1. %F A113370 Let [P^m]_k denote column k of matrix power P^m, %F A113370 so that triangular matrix P may be defined by %F A113370 [P]_k = [P^(3*k+1)]_0, k>=0. %F A113370 Define the triangular matrix Q = A113381 by %F A113370 [Q]_k = [P^(3*k+2)]_0, k>=0. %F A113370 Define the triangular matrix R = A113389 by %F A113370 [R]_k = [P^(3*k+3)]_0, k>=0. %F A113370 Then P, Q and R are related by: %F A113370 Q^2 = R*P = R*Q*(R^-2)*Q*R = P*Q*(P^-2)*Q*P, %F A113370 P^2 = Q*(R^-2)*Q^3, R^2 = Q^3*(P^-2)*Q. %F A113370 Amazingly, columns in powers of P, Q, R, obey: %F A113370 [P^(3*j+1)]_k = [P^(3*k+1)]_j, %F A113370 [Q^(3*j+1)]_k = [P^(3*k+2)]_j, %F A113370 [R^(3*j+1)]_k = [P^(3*k+3)]_j, %F A113370 [Q^(3*j+2)]_k = [Q^(3*k+2)]_j, %F A113370 [R^(3*j+2)]_k = [Q^(3*k+3)]_j, %F A113370 [R^(3*j+3)]_k = [R^(3*k+3)]_j, %F A113370 for all j>=0, k>=0. %F A113370 Also, we have the column transformations: %F A113370 P^3 * [P]_k = [P]_{k+1}, %F A113370 P^3 * [Q]_k = [Q]_{k+1}, %F A113370 P^3 * [R]_k = [R]_{k+1}, %F A113370 Q^3 * [P^2]_k = [P^2]_{k+1}, %F A113370 Q^3 * [Q^2]_k = [Q^2]_{k+1}, %F A113370 Q^3 * [R^2]_k = [R^2]_{k+1}, %F A113370 R^3 * [P^3]_k = [P^3]_{k+1}, %F A113370 R^3 * [Q^3]_k = [Q^3]_{k+1}, %F A113370 R^3 * [R^3]_k = [R^3]_{k+1}, %F A113370 for all k>=0. %e A113370 Triangle P begins: %e A113370 1; %e A113370 1,1; %e A113370 1,4,1; %e A113370 1,28,7,1; %e A113370 1,326,91,10,1; %e A113370 1,5702,1722,190,13,1; %e A113370 1,136724,43764,4945,325,16,1; %e A113370 1,4226334,1415799,163705,10751,496,19,1; %e A113370 1,161385532,56096733,6617605,437723,19896,703,22,1; %e A113370 1,7378504140,2644883675,317416204,21179483,960696,33136,946,25,1; %e A113370 Matrix cube P^3 (A113378) starts: %e A113370 1; %e A113370 3,1; %e A113370 15,12,1; %e A113370 136,168,21,1; %e A113370 1998,3190,483,30,1; %e A113370 41973,80136,13615,960,39,1; ... %e A113370 where P^3 transforms column k of P into column k+1 of P: %e A113370 at k=0, [P^3]*[1,1,1,1,1,...] = [1,4,28,326,5702,...]; %e A113370 at k=1, [P^3]*[1,4,28,326,5702,...] = [1,7,91,1722,43764,...]. %o A113370 (PARI) P(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);A[n+1,k+1] %Y A113370 Cf. A113371 (column 1), A113372 (column 2), A113373 (column 3). %Y A113370 Cf. A113374 (P^2), A113378 (P^3), A113381 (Q), A113384 (Q^2), A113387 (Q^3), A113389 (R), A113392 (R^2), A113394 (R^3), A114156 (P^-1). %Y A113370 Cf. A114150 (R^2*Q^-1=Q^3*P^-2), A114152 (R^3*P^-1). %Y A113370 Cf. variants: A113340, A113350. %K A113370 nonn,tabl %O A113370 0,5 %A A113370 _Paul D. Hanna_, Nov 14 2005