This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113389 #7 Jun 13 2017 23:30:47 %S A113389 1,3,1,15,6,1,136,66,9,1,1998,1091,153,12,1,41973,24891,3621,276,15,1, %T A113389 1166263,737061,110637,8482,435,18,1,40747561,27110418,4176549,323874, %U A113389 16430,630,21,1,1726907675,1199197442,188802141,14813844,751920,28221 %N A113389 Triangle R, read by rows, such that R^3 transforms column k of R^3 into column k+1 of R^3, so that column k of R^3 equals column 0 of R^(3*k+3), where R^3 denotes the matrix cube of R. %C A113389 Related matrix products: identity R^-2*Q^3 = Q^-1*P^2 (A114151) and R^-1*P^3 (A114153). %F A113389 Let [R^m]_k denote column k of matrix power R^m, %F A113389 so that triangular matrix R may be defined by %F A113389 [R]_k = [P^(3*k+3)]_0, k>=0, %F A113389 where the triangular matrix P = A113370 satisfies: %F A113389 [P]_k = [P^(3*k+1)]_0, k>=0. %F A113389 Define the triangular matrix Q = A113381 by %F A113389 [Q]_k = [P^(3*k+2)]_0, k>=0. %F A113389 Then P, Q and R are related by: %F A113389 Q^2 = R*P = R*Q*(R^-2)*Q*R = P*Q*(P^-2)*Q*P, %F A113389 P^2 = Q*(R^-2)*Q^3, R^2 = Q^3*(P^-2)*Q. %F A113389 Amazingly, columns in powers of P, Q, R, obey: %F A113389 [P^(3*j+1)]_k = [P^(3*k+1)]_j, %F A113389 [Q^(3*j+1)]_k = [P^(3*k+2)]_j, %F A113389 [R^(3*j+1)]_k = [P^(3*k+3)]_j, %F A113389 [Q^(3*j+2)]_k = [Q^(3*k+2)]_j, %F A113389 [R^(3*j+2)]_k = [Q^(3*k+3)]_j, %F A113389 [R^(3*j+3)]_k = [R^(3*k+3)]_j, %F A113389 for all j>=0, k>=0. %F A113389 Also, we have the column transformations: %F A113389 P^3 * [P]_k = [P]_{k+1}, %F A113389 P^3 * [Q]_k = [Q]_{k+1}, %F A113389 P^3 * [R]_k = [R]_{k+1}, %F A113389 Q^3 * [P^2]_k = [P^2]_{k+1}, %F A113389 Q^3 * [Q^2]_k = [Q^2]_{k+1}, %F A113389 Q^3 * [R^2]_k = [R^2]_{k+1}, %F A113389 R^3 * [P^3]_k = [P^3]_{k+1}, %F A113389 R^3 * [Q^3]_k = [Q^3]_{k+1}, %F A113389 R^3 * [R^3]_k = [R^3]_{k+1}, %F A113389 for all k>=0. %e A113389 Triangle R begins: %e A113389 1; %e A113389 3,1; %e A113389 15,6,1; %e A113389 136,66,9,1; %e A113389 1998,1091,153,12,1; %e A113389 41973,24891,3621,276,15,1; %e A113389 1166263,737061,110637,8482,435,18,1; %e A113389 40747561,27110418,4176549,323874,16430,630,21,1; %e A113389 1726907675,1199197442,188802141,14813844,751920,28221,861,24,1; %e A113389 Matrix cube R^3 (A113394) starts: %e A113389 1; %e A113389 9,1; %e A113389 99,18,1; %e A113389 1569,360,27,1; %e A113389 34344,9051,783,36,1; %e A113389 980487,284148,26820,1368,45,1; ... %e A113389 where R^3 transforms column k of R^3 into column k+1: %e A113389 at k=0, [R^3]*[1,9,99,1569,...] = [1,18,360,9051,...]; %e A113389 at k=1, [R^3]*[1,18,360,9051,..] = [1,27,783,26820,..]. %o A113389 (PARI) R(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^(3*k+3))[n-k+1,1] %Y A113389 Cf. A113379 (column 0), A113390 (column 1), A113391 (column 2). %Y A113389 Cf. A113370 (P), A113374 (P^2), A113378 (P^3), A113381 (Q), A113384 (Q^2), A113387 (Q^3), A113392 (R^2), A113394 (R^3). %Y A113389 Cf. A114151 (R^-2*Q^3 = Q^-1*P^2), A114153 (R^-1*P^3). %Y A113389 Cf. variants: A113340, A113350. %K A113389 nonn,tabl %O A113389 0,2 %A A113389 _Paul D. Hanna_, Nov 14 2005