cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113418 Expansion of (eta(q^2)^7*eta(q^4)/(eta(q)*eta(q^8))^2-1)/2 in powers of q.

This page as a plain text file.
%I A113418 #14 Jan 28 2024 02:00:33
%S A113418 1,-1,-2,-1,-4,2,8,-1,7,4,-10,2,-12,-8,8,-1,18,-7,-18,4,-16,10,24,2,
%T A113418 21,12,-20,-8,-28,-8,32,-1,20,-18,-32,-7,-36,18,24,4,42,16,-42,10,-28,
%U A113418 -24,48,2,57,-21,-36,12,-52,20,40,-8,36,28,-58,-8,-60,-32,56,-1,48,-20,-66,-18,-48,32,72,-7,74,36,-42,18,-80,-24
%N A113418 Expansion of (eta(q^2)^7*eta(q^4)/(eta(q)*eta(q^8))^2-1)/2 in powers of q.
%H A113418 Amiram Eldar, <a href="/A113418/b113418.txt">Table of n, a(n) for n = 1..10000</a>
%F A113418 a(n) is multiplicative and a(2^e) = -1 if e>0, a(p^e) = (p^(e+1)-1)/(p-1) if p == 1, 7 (mod 8), a(p^e) = ((-p)^(e+1)-1)/(-p-1) if p == 3, 5 (mod 8).
%F A113418 G.f.: Sum_{k>0} (2k-1)*(-1)^[k/2]*x^(2k-1)/(1+x^(2k-1)).
%F A113418 From _Amiram Eldar_, Jan 28 2024: (Start)
%F A113418 a(n) = (-1)^(n+1) * A117000(n).
%F A113418 Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(24*sqrt(2)) = 0.290786... . (End)
%t A113418 f[p_, e_] := If[1 < Mod[p, 8] < 7, ((-p)^(e+1)-1)/(-p-1), (p^(e+1)-1)/(p-1)]; f[2, e_] := -1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Aug 22 2023 *)
%o A113418 (PARI) a(n)=if(n<1, 0, -sumdiv(n,d, d*(d%2)*(-1)^(n/d+(d+1)\4)))
%o A113418 (PARI) {a(n)=local(A,p,e); if(n<1, 0, A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==2, -1, p*=kronecker(2,p); (p^(e+1)-1)/(p-1)))))}
%Y A113418 Apart from signs, same as A117000.
%Y A113418 A113416(n)=2*a(n) if n>0.
%K A113418 sign,mult
%O A113418 1,3
%A A113418 _Michael Somos_, Oct 29 2005