This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113439 #13 Jul 08 2024 21:32:01 %S A113439 1,1,1,1,2,3,4,5,8,12,17,23,34,50,72,101,146,212,306,436,627,905,1305, %T A113439 1871,2689,3872,5577,8014,11521,16576,23858,34309,49337,70968,102108, %U A113439 146868,211233,303832,437080,628708,904306,1300737,1871065,2691401 %N A113439 a(n) = a(n-1) + Sum_{k=1..floor(n/4)} a(n-4k), with a(0)=1. %C A113439 If presented in four rows a(4k), a(4k+1), a(4k+2) and a(4k+3), each term is the sum of the previous term in the sequence and the partial sum of its row; see Example section. %H A113439 G. C. Greubel, <a href="/A113439/b113439.txt">Table of n, a(n) for n = 0..1000</a> %H A113439 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,2,-1). %F A113439 a(n) = a(n-1) + 2*a(n-4) - a(n-5). %F A113439 a(n) = 9*a(n-4) - 28*a(n-8) + 38*a(n-12) - 20*a(n-16) +a(n-20). %F A113439 G.f.: (1-x^4)/(1-x-2*x^4+x^5). %e A113439 From _Jon E. Schoenfield_, Mar 11 2017: (Start) %e A113439 Table of values T(j,k) = a(4k+j) in 4 rows: %e A113439 . %e A113439 j | k=0 1 2 3 4 5 6 7 %e A113439 ----+-------------------------------------------------- %e A113439 0 | 1 2 8 34 146 627 2689 11521 ... %e A113439 1 | 1 3 12 50 212 905 3872 16576 ... %e A113439 2 | 1 4 17 72 306 1305 5577 23858 ... %e A113439 3 | 1 5 23 101 436 1871 8014 34309 ... %e A113439 . %e A113439 T(2,4) = T(1,4) + T(2,0) + T(2,1) + T(2,2) + T(2,3) %e A113439 306 = 212 + 1 + 4 + 17 + 72 %e A113439 (End) %t A113439 CoefficientList[Series[(1 - x^4)/(1 - x - 2*x^4 + x^5), {x,0,50}], x] (* _G. C. Greubel_, Mar 11 2017 *) %t A113439 LinearRecurrence[{1,0,0,2,-1},{1,1,1,1,2},50] (* _Harvey P. Dale_, Nov 10 2019 *) %o A113439 (PARI) x='x+O('x^50); Vec((1-x^4)/(1-x-2*x^4+x^5)) \\ _G. C. Greubel_, Mar 11 2017 %Y A113439 Cf. A028495, A113435, A113444. %K A113439 nonn,easy %O A113439 0,5 %A A113439 _Floor van Lamoen_, Nov 04 2005