cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113492 Least integers, starting with 1, so ascending descending base exponent transforms all triprimes.

This page as a plain text file.
%I A113492 #14 Mar 13 2017 04:30:36
%S A113492 1,7,11,3,3,4,3,5,11,4,1,2,1,1,4,8,8,2,2,6,6,7,7,3,1,3,4,2,7,2,2,3,2,
%T A113492 2,4,1,3,12,5,2,2,1,3,5,3,4,4,4,14,2,1,2,11,4,6,2,1,2,7,8,4,6,1,3,1,8,
%U A113492 1,2,4,3,12,8,1,2,11,1,2,10,2,3,3,9,1,1
%N A113492 Least integers, starting with 1, so ascending descending base exponent transforms all triprimes.
%C A113492 This is the triprime analogy to A113320.
%H A113492 G. C. Greubel, <a href="/A113492/b113492.txt">Table of n, a(n) for n = 1..1000</a>
%F A113492 a(1) = 1. For n > 1: a(n) = min {n > 0: Sum_{i=1..n} a(i)^a(n-i+1) is a triprime}. a(n) = min {n > 0: Sum_{i=1..n} a(i)^a(n-i+1) in A014612}.
%e A113492 a(1) = 1 by definition.
%e A113492 a(2) = 7 because 1^7 + 7^1 = 8 = 2^3 is a triprime (A014612).
%t A113492 p3[n_] := PrimeOmega[n] == 3; inve[w_] := Total[w^Reverse[w]]; a[1] = 1; a[n_] := a[n] = Block[{k = 0}, While[! p3[ inve@ Append[ Array[a, n - 1], ++k]]]; k]; Array[a, 75] (* _Giovanni Resta_, Jun 13 2016 *)
%Y A113492 Cf. A014612, A113320, A005408, A113122, A113153, A113154, A113336, A113271, A113258, A113257, A113231, A087316, A113208.
%K A113492 easy,nonn
%O A113492 1,2
%A A113492 _Jonathan Vos Post_, Jan 10 2006
%E A113492 Corrected and extended by _Giovanni Resta_, Jun 13 2016