cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113505 Numbers not the sum of at most three perfect powers (A001597).

This page as a plain text file.
%I A113505 #19 Jun 16 2025 00:36:20
%S A113505 7,15,23,87,111,119,167,335,1391,1455,1607,1679,1991,25887,26375
%N A113505 Numbers not the sum of at most three perfect powers (A001597).
%C A113505 Cannot be written in the form a^x + b^y + c^z with a, b, c >= 0 and x, y, z > 1.
%C A113505 a(16), if it exists, is larger than 10^8. - _Giovanni Resta_, May 07 2017
%C A113505 From _Brian Trial_, Jun 07 2025: (Start)
%C A113505 Per Legendre's three-square theorem (A004215) only integers of the form 4^i(8j+7) are eligible.
%C A113505 Every integer > 5042631 (= 1424^2 + 734*2 + 19^5) and < 10^9 can be expressed as either a^2 + b^2 + c^2 or a^2 + b^2 + c^3, a,b,c >= 0 so a(16) >= 10^9. (End)
%H A113505 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectPower.html">Perfect Power</a>
%H A113505 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerfulNumber.html">Powerful Number.</a>
%t A113505 lmt = 40000; s = Union@ Join[{0, 1}, Flatten@ Table[n^i, {n, 2, Sqrt@ lmt}, {i, 2, Log[n, lmt]}]]; t = Select[ Union[Plus @@@ Tuples[s, 3]], # < lmt + 1 &]; Complement[Range@ lmt, t] (* _Robert G. Wilson v_ *)
%Y A113505 A056828 is a subset, A001694, A274459.
%K A113505 nonn,more
%O A113505 1,1
%A A113505 R. P. van der Hilst (R.P.vanderHilst(AT)students.uu.nl), Jan 12 2006
%E A113505 Edited by _Robert G. Wilson v_, May 01 2006