This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113519 #16 Oct 09 2022 05:21:35 %S A113519 9,22,134,177,226,482,737,1046,1282,1681,1977,2641,3202,3401,3817, %T A113519 4034,4486,5462,5721,6817,7401,7702,8966,9634,9977,10681,11042,11409, %U A113519 12937,15409,16726,17177,18566,21506,28617,29801 %N A113519 Semiprimes in A056105. %C A113519 Intersection of A056105 and A001358. %H A113519 Michael De Vlieger, <a href="/A113519/b113519.txt">Table of n, a(n) for n = 1..10000</a> %e A113519 A056105(44) = 3*44^2 - 2*44 + 1 = 5721 = 3 * 1907 which is a semiprime. %e A113519 A056105(24) = 3*24^2 - 2*24 + 1 = 1681 = 41^2 which is a semiprime (the two prime factors need not be distinct). %e A113519 A056105(100) = 3*100^2 - 2*100 + 1 = 29801 = 17 * 1753, which is a semiprime. %p A113519 for n from 0 to 300 do %p A113519 s := 3*n^2-2*n+1 ; %p A113519 if isA001358(s) then %p A113519 printf("%d,",s) ; %p A113519 end if; %p A113519 end do: # _R. J. Mathar_, Jun 30 2020 %t A113519 Select[Array[3 #^2 - 2 # + 1 &, 100], PrimeOmega[#] == 2 &] (* _Michael De Vlieger_, Mar 17 2021 *) %Y A113519 Cf. A001358, A056105. %Y A113519 Cf. A113524, A113525, A113527, A113528, A113530. %K A113519 easy,nonn %O A113519 1,1 %A A113519 _Jonathan Vos Post_, Jan 12 2006