cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113533 Ascending descending base exponent transform of the infinite Fibonacci word (A003842).

This page as a plain text file.
%I A113533 #13 May 19 2017 02:37:44
%S A113533 1,3,6,5,7,12,10,15,14,14,23,16,20,27,21,30,27,25,40,28,37,38,32,49,
%T A113533 36,40,53,39,54,49,43,68,45,55,66,50,71,60,56,83,57,74,75,61,92,67,73,
%U A113533 94,68,93,84,72,113,75,94,101,79,116,89,91,122,86,115,108,90
%N A113533 Ascending descending base exponent transform of the infinite Fibonacci word (A003842).
%C A113533 The infinite Fibonacci word b(n) is the fixed point of the morphism 1->12, 2->1, starting from b(1) = 2. This transform a(n) of that sequence b(n) satisfies n <= a(n) <= 4*n, but that is not a tight bound.
%H A113533 G. C. Greubel, <a href="/A113533/b113533.txt">Table of n, a(n) for n = 1..1000</a>
%F A113533 a(n) = Sum_{k=1..n} A003842(k)^(A003842(n-k+1)). - _G. C. Greubel_, May 18 2017
%e A113533 a(1) = A003842(1)^A003842(1) = 1^1 = 1.
%e A113533 a(2) = A003842(1)^A003842(2) + A003842(2)^A003842(1) = 1^2 + 2^1 = 3.
%e A113533 a(3) = 1^1 + 2^2 + 1^1 = 6.
%e A113533 a(4) = 1^1 + 2^1 + 1^2 + 1^1 = 5.
%e A113533 a(5) = 1^2 + 2^1 + 1^1 + 1^2 + 2^1 = 7.
%e A113533 a(6) = 1^1 + 2^2 + 1^1 + 1^1 + 2^2 + 1^1 = 12.
%e A113533 a(7) = 1^2 + 2^1 + 1^2 + 1^1 + 2^1 + 1^2 + 2^1 = 10.
%e A113533 a(8) = 1^1 + 2^2 + 1^1 + 1^2 + 2^1 + 1^1 + 2^2 + 1^1 = 15.
%e A113533 a(9) = 1^1 + 2^1 + 1^2 + 1^1 + 2^2 + 1^1 + 2^1 + 1^2 + 1^1 = 14.
%e A113533 a(10) = 1^2 + 2^1 + 1^1 + 1^2 + 2^1 + 1^2 + 2^1 + 1^1 + 1^2 + 2^1 = 14.
%t A113533 A003842[n_] := n + 1 - Floor[((1 + Sqrt[5])/2)*Floor[2*(n + 1)/(1 + Sqrt[5])]]; Table[Sum[A003842[k]^(A003842[n - k + 1]), {k, 1, n}], {n, 1, 50}] (* _G. C. Greubel_, May 18 2017 *)
%Y A113533 Cf. A003842, A005408, A087316, A113122, A113153, A113154, A113208, A113231, A113257, A113258, A113271, A113320, A113336, A113498.
%K A113533 easy,nonn
%O A113533 1,2
%A A113533 _Jonathan Vos Post_, Jan 13 2006
%E A113533 Corrected and extended by _Giovanni Resta_, Jun 13 2016