cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113534 Ascending descending base exponent transform of the flipped tribonacci substitution (A092782).

This page as a plain text file.
%I A113534 #15 May 19 2017 02:37:53
%S A113534 1,3,6,7,20,10,39,12,26,19,20,43,21,78,24,53,30,57,43,88,61,59,56,43,
%T A113534 90,42,155,46,109,53,122,75,105,114,73,122,62,197,63,172,71,136,96,
%U A113534 183,140,122,139,86,179,81,304,83,185,98,153,162,160,261,121,192,107,236,126
%N A113534 Ascending descending base exponent transform of the flipped tribonacci substitution (A092782).
%C A113534 The flipped tribonacci substitution (A092782) b(n) is the fixed point of the morphism 1 -> 12, 2 -> 13, 3 -> 1, starting from b(1) = 1. The transformed sequence a(n) satisfies n <= a(n) <= 27 n but the bound can be determined to be much tighter.
%H A113534 V. F. Sirvent, <a href="http://dx.doi.org/10.1016/S0893-9659(98)00121-9">Semigroups and the self-similar structure of the flipped tribonacci substitution</a>, Applied Math. Letters, 12 (1999), 25-29. [Contains many further references.]
%F A113534 a(n) = Sum_{k=1..n} A092782(k)^(A092782(n-k+1)). - _G. C. Greubel_, May 17 2017
%e A113534 a(1) = A092782(1)^A092782(1) = 1^1 = 1.
%e A113534 a(2) = A092782(1)^A092782(2) + A092782(2)^A092782(1) = 1^2 + 2^1 = 3.
%e A113534 a(3) = 1^1 + 2^2 + 1^1 = 6.
%e A113534 a(4) = 1^3 + 2^1 + 1^2 + 3^1 = 7.
%e A113534 a(5) = 1^1 + 2^3 + 1^1 + 3^2 + 1^1 = 20.
%e A113534 a(6) = 1^2 + 2^1 + 1^3 + 3^1 + 1^2 + 2^1 = 10.
%e A113534 a(7) = 1^1 + 2^2 + 1^1 + 3^3 + 1^1 + 2^2 + 1^1 = 39.
%e A113534 a(8) = 1^1 + 2^1 + 1^2 + 3^1 + 1^3 + 2^1 + 1^2 + 1^1 = 12.
%e A113534 a(9) = 1^2 + 2^1 + 1^1 + 3^2 + 1^1 + 2^3 + 1^1 + 1^2 + 2^1 = 26.
%e A113534 a(10) = 1^1 + 2^2 + 1^1 + 3^1 + 1^2 + 2^1 + 1^3 + 1^1 + 2^2 + 1^1 = 19.
%e A113534 a(11) = 1^3 + 2^1 + 1^2 + 3^1 + 1^1 + 2^2 + 1^1 + 1^3 + 2^1 + 1^2 + 3^1 = 20.
%e A113534 a(12) = 1^1 + 2^3 + 1^1 + 3^2 + 1^1 + 2^1 + 1^2 + 1^1 + 2^3 + 1^1 + 3^2 + 1^1 = 43.
%t A113534 A092782[n_] := Nest[Function[l, {Flatten[(l /. {1 -> {1, 2}, 2 -> {1, 3}, 3 -> {1}})]}], {1}, n][[1]]; Table[Sum[(A092782[k][[k]])^((A092782[n - k + 1][[n - k + 1]])), {k, 1, n}], {n, 1, 10}] (* _G. C. Greubel_, May 18 2017 *)
%Y A113534 Cf. A005408, A087316, A092782, A113122, A113153, A113154, A113208, A113231, A113257, A113258, A113271, A113320, A113336, A113498.
%K A113534 easy,nonn
%O A113534 1,2
%A A113534 _Jonathan Vos Post_, Jan 13 2006
%E A113534 a(3) corrected by _Giovanni Resta_, Jun 13 2016
%E A113534 a(13) onward from _G. C. Greubel_, May 18 2017