This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113584 #22 Jan 02 2025 09:33:26 %S A113584 3,7,3,3,43,101,19,269,1873,41,241,3137,139,9011,9187,641,29881,12227, %T A113584 3169,13499,8539,7019,19447,12899,73243,124769,1063,37847,127,32321, %U A113584 104287,3407,93553,256643,165469,744659,60217,54773,49297,214457,314077,271409,602383,56921,193051,255383,75991,25667,583147,121019 %N A113584 Beginning with 3, least prime such that concatenation of first n terms and its digit reversal both are primes. %H A113584 J.W.L. (Jan) Eerland, <a href="/A113584/b113584.txt">Table of n, a(n) for n = 1..224</a> %p A113584 rev:= proc(n) local L,i; %p A113584 L:= convert(n,base,10); %p A113584 add(L[-i]*10^(i-1),i=1..nops(L)) %p A113584 end proc: %p A113584 tcat:= proc(a,b) %p A113584 a*10^(1+ilog10(b))+b %p A113584 end proc: %p A113584 A:= 3: x:= 3: %p A113584 for i from 1 to 50 do %p A113584 p:= 2: %p A113584 do %p A113584 p:= nextprime(p); %p A113584 y:= tcat(x,p); %p A113584 if isprime(y) and isprime(rev(y)) then %p A113584 A:= A,p; %p A113584 x:= y; %p A113584 break %p A113584 fi; %p A113584 od %p A113584 od: %p A113584 A; # _Robert Israel_, Dec 26 2024 %t A113584 w = {3}; %t A113584 Do[k = 1; %t A113584 q = Monitor[ %t A113584 Parallelize[ %t A113584 While[True, %t A113584 If[PrimeQ[ %t A113584 FromDigits[ %t A113584 Join @@ IntegerDigits /@ %t A113584 Reverse[ %t A113584 IntegerDigits[ %t A113584 FromDigits[ %t A113584 Join @@ IntegerDigits /@ Append[w, Prime[k]]]]]]] && %t A113584 PrimeQ[FromDigits[ %t A113584 Join @@ IntegerDigits /@ Append[w, Prime[k]]]], Break[]]; k++]; %t A113584 Prime[k]], k]; %t A113584 w = Append[w, q], {i, 2, 50}]; %t A113584 w (* _J.W.L. (Jan) Eerland_, Dec 19 2024 *) %o A113584 (Python) %o A113584 from itertools import count, islice %o A113584 from gmpy2 import digits, is_prime, mpz, next_prime %o A113584 def agen(): # generator of terms %o A113584 s, r, an = "", "", 3 %o A113584 while True: %o A113584 yield int(an) %o A113584 d = digits(an) %o A113584 s, r, p, sp = s+d, d[::-1]+r, 3, "3" %o A113584 while not is_prime(mpz(s+sp)) or not is_prime(mpz(sp[::-1]+r)): %o A113584 p = next_prime(p) %o A113584 sp = digits(p) %o A113584 an = p %o A113584 print(list(islice(agen(), 50))) # _Michael S. Branicky_, Jan 02 2025 %Y A113584 Cf. A111382, A111383. %K A113584 base,nonn %O A113584 1,1 %A A113584 _Amarnath Murthy_, Nov 06 2005 %E A113584 Corrected and extended by _Hans Havermann_, Nov 08 2005 %E A113584 a(40)-a(50) from _J.W.L. (Jan) Eerland_, Dec 19 2024