This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A113631 #15 Sep 08 2022 08:45:23 %S A113631 0,1,2,4,5,6,11,9,8,20,14,14,26,17,18,48,22,22,49,28,36,69,33,37,68, %T A113631 47,43,83,49,47,125,50,53,118,56,94,126,63,63,153,98,71,186,79,94,230, %U A113631 89,91,197,127,127,215,112,105,220,172,147 %N A113631 Number of distinct representations of (2n)^2 as the sum of two primes. %C A113631 From Halberstam and Richert: A045917(2n)<(8+0(1))*c(n)*n/log(n)^2 where c(n)=prod(p>2,(1-1/(p-1)^2))*prod(p|n,p>2,(p-1)/(p-2)). Hence a(n) = A045917(2n) < (8+0(1))*c(2n)*2n/log(2n)^2 where c(k)=prod(p>2,(1-1/(p-1)^2))*prod(p|k,p>2,(p-1)/(p-2)). See also: A045917 From Goldbach problem: number of decompositions of 2n into unordered sums of two primes. A016742 Even squares: (2n)^2. %C A113631 a(n)=A061358(4n^2). - _Emeric Deutsch_, Apr 03 2006 %D A113631 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99. %D A113631 H. Halberstam and H. E. Richert, 1974, "Sieve methods", Academic press, London, New York, San Francisco. %H A113631 Marius A. Burtea, <a href="/A113631/b113631.txt">Table of n, a(n) for n = 0..500</a> %F A113631 a(n) = A045917(2n). a(n) = #{p(i) + p(j) = A016742(n) for p(k) = A000040(k) and i >= j}. a(n) = #{p(i) + p(j) = (2*n)^2 for p(k) = A000040(k) and i >= j}. %e A113631 a(1) = 1 because (2*1)^2 = 4 = 2 + 2 uniquely. %e A113631 a(2) = 2 because (2*2)^2 = 16 = 3 + 13 = 5 + 11. %e A113631 a(3) = 4 because (2*3)^2 = 36 = 5 + 31 = 7 + 29 = 13 + 23 = 17 + 19. %e A113631 a(4) = 5 because (2*4)^2 = 64 = 3 + 61 = 5 + 59 = 11 + 53 = 17 + 47 = 23 + 41. %e A113631 a(5) = 6 because (2*5)^2 = 100 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53. %e A113631 a(6) = 11 because (2*6)^2 = 144 = 5 + 139 = 7 + 137 = 13 + 131 = 17 + 127 = 31 + 113 = 37 + 107 = 41 + 103 = 43 + 101 = 47 + 97 = 61 + 83 = 71 + 73. %p A113631 g:=sum(sum(x^(ithprime(i)+ithprime(j)),i=1..j),j=1..1500): gser:=series(g,x=0,12560): 0,seq(coeff(gser,x^(4*n^2)),n=1..56); # _Emeric Deutsch_, Apr 03 2006 %o A113631 (Magma) [#RestrictedPartitions(4*n^2,2,{p:p in PrimesUpTo(20000)}):n in [0..56] ] // _Marius A. Burtea_, Jan 19 2019 %Y A113631 Cf. A000040, A045917, A016742. %Y A113631 Cf. A061358. %K A113631 easy,nonn %O A113631 0,3 %A A113631 _Jonathan Vos Post_, Mar 31 2006 %E A113631 Corrected and extended by _Emeric Deutsch_, Apr 03 2006